首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
NFA 确定化为 DFA
2024-08-31
第八次作业-非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
非确定的自动机NFA确定化为DFA
摘要: 在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程.这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率.因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’. 有穷自动机(也
编译原理之非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言. 语言为:(a|b)*abb 2.NFA 确定化为 DFA 1.解决多值映射:子集法 1). 上述练习1的NFA 2). 将下图NFA 确定化为 DFA 2.解决空弧:对初态和所有新状态求ε-闭包 1). 图转换为矩阵: 状态转换图: 识别语言为:0
作业八——非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
第八次——非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
编译原理:非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言. 解析: a b 0 {0,1} 0 1 2 2 3 3 状态转换图如下: 识别语言为:(a | b)*abb 2.NFA 确定化为 DFA 1.解决多值映射:子集法 1). 上述练习1的NFA 解析: 根据1的NFA构造DFA状态转换矩阵如
第八次-非确定的自动机NFA确定化为DFA
提交作业 NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射
NFA转化为DFA
NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机) NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA. 提示:ε是空串的意思!空串没有任何字符! 这里直接讲将ε-NFA转化为DFA的过程,将NFA转化为DFA的情况类似. 转化的过程总的来说有两大步骤:ε-NFA转化为DFA,以及DFA简化 ε-NFA转化为DFA前件知识 1.对状态图进行改造 增加状态X,Y,使之成为新的唯一的初态和终态,从X引ε弧到原初态节点,从原终
编译原理-NFA转化成DFA
1.假定NFA M=<S,∑,f,S0,F> 对M的状态转换图进行以下改造: ①引进新的初态结点X和终态结点Y, X,Y∈S, 从X到S0中的任意结点连一条ε箭弧,从F中任意结点到Y连一条ε箭弧.(解决初态的唯一性) ②引入新状态对M的状态转换图进行进一步的替换(简化弧上的标记) 2.NFA确定化:子集法(解决弧和转换问题) 设I是S的一个子集 ①J为I中的某个状态经过一条a弧而到达的集合 ②ε-closure(I):I∪{s'|从s∈I出发经过任意条ε弧能到达s'}
正规式转化为DFA
https://www.bilibili.com/video/BV1dj411f7AR?p=50 例题:
NFA转换为等价的DFA
在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程.这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率.因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’. 有穷自动机(也称有限自
如何将 不确定的有穷自动机(NFA) 转化为 确定的有穷自动机(DFA) 并将DFA最简化
一.从NFA到DFA的转换 例如下图: DFA的每个状态都是一个由NFA中的状态构成的集合,即NFA状态集合的一个子集 r =aa*bb*cc* 二.从带有ε-边的NFA到DFA的转换 r=0*1*2* 三.子集构造法( subset construction) 输入:NFA N 输出:接收同样语言的DFA D 方法:一开始,ε-closure ( s0 )是Dstates 中的唯一状态,且它未加标记: while(在Dstates中有一个未标记状态T ) { 给T加上标记: for(每
自己动手开发编译器(四)利用DFA转换表建立扫描器
上回我们介绍了两种有穷自动机模型——确定性有穷自动机DFA和非确定性有穷自动机,以及从正则表达式经过NFA最终转化为DFA的算法.有些同学表示还是难以理解NFA到底怎么转化为DFA.所以本篇开头时我想再多举一个例子,看看NFA转化为DFA之后到底是什么样.首先我们看下面的NFA,它是从一组词法分析所用的正则表达式转换而来的.这个NFA合并了IF.ID.NUM.error这四个单词的NFA.因此,它的四个接受状态分别代表遇到了四种不同的单词. 用上一篇学到的方法,我们需要求出一个DFA,它的每个状
自动构造词法分析器的步骤——正规式转换为最小化DFA
正规式-->最小化DFA 1.先把正则式-->NFA(非确定有穷自动机) 涉及一系列分解规则 2.再把NFA通过"子集构造法"-->DFA 通过子集构造法将NFA转化为DFA 将表里的变量名用比较简单的符号代替(最好是在进行构造的时候顺手在草稿纸上标记好,方便后面的工作) 对照上面的表,画出DFA的状态转换图 图中0,1,2,3,4,5都是终态,因为他们的集合里都包含了最初的终态"数字9". 3.再把DFA通过"分割法"进行最小
NFA转DFA - json数字识别
json的主页上,提供了number类型的符号识别过程,如下: 图片引用:http://www.json.org/json-zh.html 实际上这张图片表示的是一个状态机,只是状态没有标出来.因为这个状态机上存在ε转换,所以它是一个NFA(不确定有限自动机).ε转换也即不需要输入串就能进行的转换,例如从开始状态到0之前的状态.而我们进行识别的时候,使用DFA(确定有穷自动机)会简单方便得多.所以首先应该将这个NFA转成DFA. 首先把这个NFA规范一下,写成状态与箭头的形式: NFA转DF
利用子集构造法实现NFA到DFA的转换
概述 NFA非有穷自动机,即当前状态识别某个转换条件后到达的后继状态不唯一,这种自动机不便机械实现,而DFA是确定有限状态的自动机,它的状态转换的条件是确定的,且状态数目往往少于NFA,所以DFA能够比较方便的机械实现且识别能力方面也和NFA相当.本次实验采用子集构造法来实现不带空弧的由NFA到DFA的转换. 子集构造法的算法如下: 设NFA为M=(K,Σ,f,S0,Z),则构造相应的DFA M′=(Q,Σ,f′,I0,F)①取I0=S0:②对于状态集Q中任一尚未标记的状态qi={Si1,Si
编译原理-NFA构造DFA
本题摘自北邮的编译原理与技术. 首先,根据此图构造状态转换表 表中第一列第一行表示从第一个符号B通过任意个空转换能到达的节点,Ia表示由此行的状态数组({B,5,1}可以看作0状态)经过一个a可以到达的节点,同理,Ib表示由状态数组经过一个b可以到达的节点. 当然,有些人可能觉得{B,5,1}和{5,1,3}看作两个状态不合理,他们之间不是有交集嘛,实际上他们之间并无交集,因为输入a后,{B,5,1}能到达的新节点是3,之所以要写成{5,1,3},可能是要兼顾逻辑吧>_> 再仔细观察第一行,既
NFA/DFA算法
1.问题概述 随着计算机语言的结构越来越复杂,为了开发优秀的编译器,人们已经渐渐感到将词 法分析独立出来做研究的重要性.不过词法分析器的作用却不限于此.回想一下我们的老师刚刚开始向我们讲述程序设计的时候,总是会出一道题目:给出一个填入 了四则运算式子的字符串,写程序计算该式子的结果.除此之外,我们有时候建立了比较复杂的配置文件,譬如XML的时候,分析器首先也要对该文件进行词法分 析,把整个字符串断成了一个一个比较短小的记号(指的是具有某种属性的字符串),之后才进行结构上的分析.再者,在实现某种控
什么是NFA(不确定的有穷自动机)和DFA(确定的有穷自动机)
本节知识点是<编译原理>第三章-词法分析,学习参考教材为清华大学出版社<编译原理>第三版: 前情提要: 字母表∑1和∑2的乘积( product): ∑1∑2 ={ab|a ∈∑1, b ∈ ∑2} 例: {0, 1} {a, b} ={0a, 0b, 1a, 1b} 字母表∑的n次幂( power):长度为n的符号串构成的集合 ∑0 ={ ε } ∑n =∑n-1 ∑ , n ≥ 例: {0, 1}3 ={0, 1} {0, 1} {0, 1}={000, 001, 010, 0
C# 词法分析器(五)转换 DFA
系列导航 (一)词法分析介绍 (二)输入缓冲和代码定位 (三)正则表达式 (四)构造 NFA (五)转换 DFA (六)构造词法分析器 (七)总结 在上一篇文章中,已经得到了与正则表达式等价的 NFA,本篇文章会说明如何从 NFA 转换为 DFA,以及对 DFA 和字符类进行化简. 一.DFA 的表示 DFA 的表示与 NFA 比较类似,不过要简单的多,只需要一个添加新状态的方法即可.Dfa 类的代码如下所示: namespace Cyjb.Compilers.Lexers { class Df
热门专题
mariadb cvs导入
使用注解实现模糊查询
python统计一串字符中某yi字符的个数
@RequestBody long值
docker 镜像 批量 保存
layer打开页面resize
pyenv创建虚拟环境报错
springMVC lib下jar无效
vscode c环境搭建 mac
Dom4j 返回节点所在的位置
java删除七牛云上的图片
Johnson 算法找回路的时间复杂度
vivado verilog工程
使用https实现git push
手柄 方向盘 开发板 开发
next cloud怎么用
openssl证书管理代码
signal 6崩溃
u盘拷电影总是剩下最后5秒怎么回事
C# lodop打印PRINT_DESIGN