from pandas import Panel, DataFrame import numpy as np dd = {} for i in range(1, 3): name = 'X' + str(i) dd[name] = DataFrame(np.random.randn(3,3)) print(DataFrame(np.random.randn(3,3))) print(Panel(dd)) 雅虎行情数据格式 <class 'pandas.core.panel.Panel'>
Pandas 中一维 series, 二维DataFrame, 三维Panel class pandas.Panel(data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)[source] Represents wide format panel data, stored as 3-dimensional array Parameters: data : ndarray (items x m
Extjs4.x中已经取消了组件Ext.Tree.TreeFilter功能,却掉了树形结构的过滤功能,要实现该功能只能自己写了. Tree节点筛选UI很简单,一个Tbar,一个trigger即可解决问题,剩下的是逻辑代码了. 1.tbar没啥好解析的 2.trigger几个比较重要的属性 triggerCls:文本框右侧的按钮样式,主要有4种 x-form-clear-trigger // the X icon x-form-search-trigger // the magnifying gl
Panel is deprecated and will be removed in a future version.The recommended way to represent these types of 3-dimensional data are with a MultiIndex on a DataFrame, via the Panel.to_frame() methodAlternatively, you can use the xarray package http://x
numpy array 过滤后的数组,索引值从 0 开始. pandas Series 过滤后的 Series ,保持原来的索引,原来索引是几,就是几. 什么意思呢,来看个栗子: import numpy as np import pandas as pd # 有两个相同的数组,一个是pd Series 一个是 np array a = pd.Series([1, 2, 3, 4]) c = np.array([1, 2, 3, 4]) # 通过索引数组来过滤数组 d = a[a>3] e =
Python Data Analysis Library — pandas: Python Data Analysis Library https://pandas.pydata.org/ pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming l
This would allow chaining operations like: pd.read_csv('imdb.txt') .sort(columns='year') .filter(lambda x: x['year']>1990) # <---this is missing in Pandas .to_csv('filtered.csv') For current alternatives see: http://stackoverflow.com/questions/11869