获取链表List中对象属性最大值最小值(Max,Min)的方法: 1.创建一个类,类中有一个属性A /// <summary> /// 用于测试属性的类 /// </summary> public class ListTest { private int a; public int A { get { return a; } set { a = value; } } } 2.在主函数中创建3个类A的对象,分别给属性A赋值为1,2,10,将3个对象加入链表中 class Progra
pandas Series 比 numpy array 要强大很多,体现在很多方面 首先, pandas Series 有一些方法,比如: describe 方法可以给出 Series 的一些分析数据: import pandas as pd s = pd.Series([1,2,3,4]) d = s.describe()print(d) count 4.000000 mean 2.500000 std 1.290994 min 1.000000 25% 1.750000 50% 2.5000
python. pandas(series,dataframe,index,reindex,csv file read and write) method test import pandas as pdimport numpy as np def testpandas(): p = pd.Series([1,2,3,4,5],index =('a','b','c','d','e')) print(p) cities = {'bejing':5500,'shanghai':5999,'shezh
Tunnel Warfare http://acm.hdu.edu.cn/showproblem.php?pid=1540 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 13440 Accepted Submission(s): 5333 Problem Description During the War of Resistan
pandas.Series class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False) One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be any hashable type. The object supports
class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False) e.g., s = pd.Series(data = np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])) 会生成: a 0.2941 b 0.2869 c 1.7098 d -0.2126 e 0.2696 dtype: float64 也可以直接写: s