首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pdf 深度学习原理与应用
2024-11-02
参考《深度学习原理与应用实践》中文PDF
读国内关于深度学习的书籍,可以看看<深度学习原理与应用实践>,对深度学习原理的介绍比较简略(第3.4章共18页).只介绍了"神经网络"和"卷积神经网络",其他类型的深度神经网络(如自动编码器.循环神经网络)没有涉及. 深度学习开源工具Caffe框架和源代码解析的内容比较详细(第5章共60页),重点是卷积神经网络的实践部分.用八章介绍八个图像识别方面的应用场景,如手写数字识别.人脸识别.表情识别.年龄识别等. 最后部分对"深度学习的缺陷"
推荐《深入浅出深度学习原理剖析与python实践》PDF+代码
<深入浅出深度学习原理剖析与Python实践>介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用:第二部分详细讲解了与深度学习相关的基础知识,包括线性代数.概率论.概率图模型.机器学习和最优化算法:在第三部分中,针对若干核心的深度学习模型,如自编码器.受限玻尔兹曼机.递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用. <深入浅出深度学习:原理剖析与Python实践>适合有一定高等数
DeepMind背后的人工智能:深度学习原理初探
去年11月,一篇名为<Playing Atari with Deep Reinforcement Learning>的文章被初创人工智能公司DeepMind的员工上传到了arXiv网站.两个月之后,谷歌花了500万欧元买下了DeepMind公司,而人们对这个公司的了解仅限于这篇文章.近日,Tartu大学计算机科学系计算神经学小组的学者在robohub网站发表文章,阐述了他们对DeepMind人工智能算法的复现. 在arXiv发表的原始论文中,描述了一个单个的网络,它能够自我学习从而自动的玩一些
《深度学习原理与TensorFlow实践》喻俨,莫瑜
1. 深度学习简介 2. TensorFlow系统介绍 3. Hello TensorFlow 4. CNN看懂世界 5. RNN能说会道 6. CNN LSTM看图说话 7. 损失函数与优化算法 TensorFlow的出现和成熟,改变了深度学习的入门和深造路径.今天我们完全可以从具体需求出发,以实践主导,比较容易地入门这一前沿人工智能技术.但是要超越写写例子.做做Demo的层次,创造性地解决新问题,必须在理论上达到一定的理解高度.本书就是沿着这样一个思路展开的,本书作者开辟了一条由实践主导.兼
深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和
深度学习原理与框架-卷积网络细节-图像分类与图像位置回归任务 1.模型加载 2.串接新的全连接层 3.使用SGD梯度对参数更新 4.模型结果测试 5.各个模型效果对比
对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h) x和y表示的是左上角的位置,w和h表示的是矩形框的宽和高 目标检测是分类和回归都进行的一种算法 对于位置的回归而言,使用全连接层获得结果的4个输出,使用欧式距离计算损失值 对图像物体进行卷积,对卷积后的特征图分开进行计算,一条通路计算回归,一条通路计算分类 目标检测的实际操作步骤: 第一步:下载
深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢
空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1,即dilated等于2 空洞卷积在语义分割中的使用较多,因为涉及到向下卷积和向上卷积,为了不使用padding降低图片的维度,造成feature_map的信息损失,同时又可以在一定程度上增加感受眼.使用了这种空洞卷积的方式,增加感受眼,在语义分割中的使用方法是:使用多个不同尺度的空洞卷积,将最后的结
深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4. 3*3的卷积经过扩张以后形成了5*5 feature_map为偶数 feature_map为偶数 代码:主函数 with tf.variable_scope('
深度学习原理与框架- batch_normalize(归一化操作)
1. batch_normalize(归一化操作),公式:传统的归一化公式 (number - mean) / std, mean表示均值, std表示标准差 而此时的公式是 scale * (num - mean) / std + beta #scale 和 beta在计算的过程中会进行不断的更新,以使得数据可以产生多样性的分步 即 经过一次卷积层后,进行一次归一化操作,同时进行一次激活操作 x = conv_layer(x, [5, 5, 3, 64], 1) x = batch_norm
深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)
1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说明一下:即根据每一行X中的一个数,从W中取出对应行的128个数据,比如X[1, 3]个数据是3062,即从W中的第3062行取出128个数据 import numpy as np import tensorflow as tf data = np.array([[2, 1], [3, 4], [5,
深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读
1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_size表示一个batch的大小,num_threads表示使用几个线程进行执行 import tensorflow as tf import numpy as np def generate_data(): num = 25 label = np.asarray(range(0, num)) im
深度学习原理与框架-Tfrecord数据集的制作 1.tf.train.Examples(数据转换为二进制) 3.tf.image.encode_jpeg(解码图片加码成jpeg) 4.tf.train.Coordinator(构建多线程通道) 5.threading.Thread(建立单线程) 6.tf.python_io.TFR(TFR读入器)
1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Features(feature=tf.train.Feature(int64_list=tf.train.Int64List(value=[value])))) 对于bytes类型: tf.train.Examples(features=tf.train.Features(feature=tf.train.F
深度学习原理与框架-Tensorboard可视化展示(代码) 1.tf.reuse_default_graph(进行结构图的重置) 2.tf.summary.FileWriter(writer实例化) 3. write.add_graph(graph的写入) 4. tf.summary.merge_all(将summary进行合并) 5.write.add_summary(将所有summary)
1. tf.reuse_default_graph() # 对graph结构图进行清除和重置操作 2.tf.summary.FileWriter(path)构造writer实例化,以便进行后续的graph写入 参数说明:path表示路径 3.writer.add_graph(sess.graph) 将当前参数的graph写入到tensorboard中 参数说明:sess.graph当前的网络结构图 4. summ = tf.summary.merge_all() # 将所有的summary都添加
深度学习原理与框架-Alexnet(迁移学习代码) 1.sys.argv[1:](控制台输入的参数获取第二个参数开始) 2.tf.split(对数据进行切分操作) 3.tf.concat(对数据进行合并操作) 4.tf.variable_scope(指定w的使用范围) 5.tf.get_variable(构造和获得参数) 6.np.load(加载.npy文件)
1. sys.argv[1:] # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得what这个数值 # test.py import sys print(sys.argv[1:]) 2. tf.split(value=x, num_or_size_split=2, axis=3) # 对数据进行切分操作,比如原始维度为[1, 227, 227, 96], 切分后的维度为[2, 1,
深度学习原理与框架-递归神经网络-时间序列预测(代码) 1.csv.reader(进行csv文件的读取) 2.X.tolist(将数据转换为列表类型)
1. csv.reader(csvfile) # 进行csv文件的读取操作 参数说明:csvfile表示已经有with oepn 打开的文件 2. X.tolist() 将数据转换为列表类型 参数说明:X可以是数组类型等等 代码说明:使用的是单层的rnn网络,迭代的终止条件为,第n的100次循环的损失值未降低次数超过3次,即跳出循环 数据说明:使用的是乘客的人数,训练集和测试集的分配为0.8和0.2, train_x使用的是前5个数据,train_y使用的是从2个数据到第6个数据,以此往后类推
深度学习原理与框架-递归神经网络-RNN_exmaple(代码) 1.rnn.BasicLSTMCell(构造基本网络) 2.tf.nn.dynamic_rnn(执行rnn网络) 3.tf.expand_dim(增加输入数据的维度) 4.tf.tile(在某个维度上按照倍数进行平铺迭代) 5.tf.squeeze(去除维度上为1的维度)
1. rnn.BasicLSTMCell(num_hidden) # 构造单层的lstm网络结构 参数说明:num_hidden表示隐藏层的个数 2.tf.nn.dynamic_rnn(cell, self.x, tf.float32) # 执行lstm网络,获得state和outputs 参数说明:cell表示实例化的rnn网络,self.x表示输入层,tf.float32表示类型 3. tf.expand_dim(self.w, axis=0) 对数据增加一个维度 参数说明:self.w表
深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse) # 构建单层的LSTM网络 参数说明:num_hidden表示隐藏层的个数,reuse表示LSTM的参数进行复用 2.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob) # 表示对rnn的输出层进行dropout 参数说明:cell表示单层的lstm,o
深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob
深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数说明:pool_h1表示输入数据,4表示使用前后几层进行归一化操作,bias表示偏移量,alpha和beta表示系数 局部响应的公式 针对上述公式,做了一个试验代码: # 自己编写的代码, 对x的[1, 1, 1, 1]进行局部响应归一化操作,最后结果是相同的x = np.array([i for
深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷
热门专题
python的turtle图形绘制时的箭头
dump文件太大怎么分析
numpy 获取排名
cdh为什么需要httpd服务
jquery简单图片动画
unity ui 射线
ARCGIS与pg连接此版本的数据库无效或已失效
sql server更新的时候加更新时间的触发器
server2012 安装net3.5出错80070002
BigDecimal相加并判空
elementui日期选择器不能选今天之前的日期
Ubuntu linux 百度网盘下载
scratch中x坐标与鼠标的x坐标相反
php上传永久图片素材
dll注入 js脚本
wpf 后台怎么修改DataGridTextColumn值
free性ⅴideo西欧极品
centos安装exceptionless4.1
Python QTreeWidgetItem 展开指定节点
js auto-complete邮箱补全