matplolib.org可查到更多画图方法等 散点图 import matplotlib.pyplot as plt import numpy as np #n个点 n = 1024 #平均值是0,方差是1 X = np.random.normal(0,1,n) Y = np.random.normal(0,1,n) #确定颜色 T = np.arctan2(Y,X) plt.scatter(X,Y,s=75,c=T,alpha=0.5) #plt.scatter(np.arange(5),n
import numpy as np import matplotlib.pyplot as plt x=[2.3,4.5,3,7,6.5,4,5.3] y=[5,4,7,5,5.3,5.5,6.2] n=np.arange(7) fig,ax=plt.subplots() ax.scatter(x,y,c='r') for i,txt in enumerate(n): ax.annotate(txt,(x[i],y[i])) 在聚类时我们需要看到数据的分布情况,更直观的观察数据,可以使用这个.
用matplotlib模块 #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import random import matplotlib import matplotlib.pyplot as plt def list2mat(data_list,w): ''' 切片.转置 ''' mat=[] res=[] for i in range(0,len(data_list)-w+1,w): mat
Python入门-散点图绘制 废话不说 直接上代码 import matplotlib.pyplot as plt x_values = list(range(1,1001)) y_values = [x**2 for x in x_values] plt.scatter(x_values, y_values,c=y_values,cmap=plt.cm.Blues, edgecolor='none', s=40) #设置图表标题并给坐标轴加上标签 plt.title("Squares num