首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python数据探索和清洗
2024-08-30
python数据探索与数据与清洗概述
数据探索的核心: 1.数据质量分析(跟数据清洗密切联系,缺失值.异常值等) 2.数据特征分析(分布.对比.周期性.相关性.常见统计量等) 数据清洗的步骤: 1.缺失值处理(通过describe与len直接发现.通过0数据发现) 2.异常值处理(通过散点图发现) 一般遇到缺失值,处理方式为(删除.插补.不处理) 插补 遇到异常值,一般处理方式为视为缺失值.删除.修补(平均数.中位数等).不处理.
python数据探索
数据质量分析 脏数据包括:缺失值:异常值:不一致的值:重复数据及含有特殊符号的数据: 1.缺失值处理 统计缺失率,缺失数 2.异常值处理 (1)简单统计量分析 (2)3Q原则 正态分布情况下,小概率事件为异常值 不服从正太分布的,可以用原离平均值多少倍标准差来分析 (3)箱线图分析 使用describe()描述 主要数据探索函数 1.Pandas常用函数总结 导入数据 导出数据 查看.检查数据 数据选取 数据清理 dataframe处理NAN值 data_3=data_3.where(data_
Python数据预处理:机器学习、人工智能通用技术(1)
Python数据预处理:机器学习.人工智能通用技术 白宁超 2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不一致.有异常的数据,严重影响到数据建模的执行效率,甚至可能导致模型结果的偏差,因此要数据预处.数据预处理主要是将原始数据经过文本抽取.数据清理.数据集成.数据处理.数据变换.数据降维等处理后,不仅提高了数据质量,而且更好的提升算法模型性能.数据预处理在数据挖掘.自然语言处理.机器学习.深度学习算法中
数据挖掘(二)用python实现数据探索:汇总统计和可视化
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处理,另一方面在进行特征工程时可以给我们一些思路.所以这样一个过程在数据挖掘中还是蛮有用的,相信大家在网上看过不少数据挖掘比赛的Kernel,一般一上来都先是个数据探索的过程.之前听过一个老师讲课,说数据探索过程其实可有可无,直接预处理猛搞,但典型的口嫌体正直,在演示一个比赛的流程时,还是先进行了汇总
利用python进行泰坦尼克生存预测——数据探索分析
最近一直断断续续的做这个泰坦尼克生存预测模型的练习,这个kaggle的竞赛题,网上有很多人都分享过,而且都很成熟,也有些写的非常详细,我主要是在牛人们的基础上,按照数据挖掘流程梳理思路,然后通过练习每一步来熟悉应用python进行数据挖掘的方式. 数据挖掘的一般过程是:数据预览——>数据预处理(缺失值.离散值等)——>变量转换(构造新的衍生变量)——>数据探索(提取特征)——>训练——>调优——>验证 1 数据预览 1.1 head() 预览数据集的前面几条数据可以大致
Python机器学习之数据探索可视化库yellowbrick
# 背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plotly.seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发难度降低了很多. 前阵子看到这个库可以较为便捷的实现数据探索,今天得空打算学习一下.原本访问的是英文文档,结果发现已经有人在做汉化,虽然看起来也像是谷歌翻译的,本着拿来主义,少费点精力的精神,就半抄半学,还
Python机器学习之数据探索可视化库yellowbrick-tutorial
背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plotly.seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发难度降低了很多. 前阵子看到这个库可以较为便捷的实现数据探索,今天得空打算学习一下.原本访问的是英文文档,结果发现已经有人在做汉化,虽然看起来也像是谷歌翻译的,本着拿来主义,少费点精力的精神,就半抄半学,还是发
python数据挖掘之数据探索第一篇
目录 数据质量分析 当我们得到数据后,接下来就是要考虑样本数据集的数据和质量是否满足建模的要求?是否出现不想要的数据?能不能直接看出一些规律或趋势?每个因素之间的关系是什么? 通过检验数据集的数据质量,绘制图表,计算某些特征值等手段,对样本数据集的结构和规律进行分析的过程就是数据探索.数据质量检测对后面的数据预处理有很大参考作用,并有助于选择合适的建模方法. 数据探索大致分为 质量探索 和 特征探索 两方面. 数据质量分析 定义:数据质量分析是数据预处理的前提,也是对数据挖掘的
python数据处理(七)之数据探索和分析
1.探索数据 1.1 安装agate库 1.2 导入数据 1.3 探索表函数 a.排序 b.最值,均值 c.清除缺失值 d.过滤 e.百分比 1.4 连结多个数据集 a.捕捉异常 b.去重 c.缺失数据的处理 d.联结数据集 1.5 识别相关性 利用numpy分析 1.6 找出离群值 a.使用标准差 b.使用绝对中位差 (数据分布以及数据分布所展现的趋势) 1.7 数据分组 研究数据分组之间的关系(创建分组,聚合这些分组,确定分组之间的联系) 2 分析数据 2.1 分析数据与探索数据的区别 分析
Python数据可视化的四种简易方法
摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据,并且创建可视化确实有助于让问题更清晰和更容易理解,尤其是对于那些较大的高维度数据集.在项目结束的时候,能够以清晰的.简洁的和令人信服的方式呈现最终结果,这是非常重要的,让你的用户能够理解和明白. 你可能已经看过了我之前的文章<5种快速和简单的Python数据可视化方法(含代码)>(5 Quick
Python数据可视化的10种技能
今天我来给你讲讲Python的可视化技术. 如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解.其中最直观的就是采用数据可视化技术,这样,数据不仅一目了然,而且更容易被解读.同样在数据分析得到结果之后,我们还需要用到可视化技术,把最终的结果呈现出来. 可视化视图都有哪些? 按照数据之间的关系,我们可以把可视化视图划分为4类,它们分别是比较.联系.构成和分布.我来简单介绍下这四种关系的特点: 比较:比较数据间各类别的关系,或者是它们随着时间
Python 数据图表工具的比较
Python 的科学栈相当成熟,各种应用场景都有相关的模块,包括机器学习和数据分析.数据可视化是发现数据和展示结果的重要一环,只不过过去以来,相对于 R 这样的工具,发展还是落后一些. 幸运的是,过去几年出现了很多新的Python数据可视化库,弥补了一些这方面的差距.matplotlib 已经成为事实上的数据可视化方面最主要的库,此外还有很多其他库,例如vispy,bokeh, seaborn, pyga, folium 和networkx,这些库有些是构建在 matplotlib 之上,还有
Python数据科学手册Seaborn马拉松可视化里时分秒转化为秒数的问题
Python数据科学手册Seaborn马拉松可视化里时分秒转化为秒数的问题 问题描述: 我实在是太懒了,问题描述抄的网上的哈哈哈:https://www.jianshu.com/p/6ab7afa059d1 在做Python Data Science Handbook的实例学习,4.16.3 案例:探索马拉松比赛成绩里,有提示将时分秒的时间化为秒的总数,以方便画图.书里给出的指令是: data['split_sec']=data['split'].astype(int)/1E9 data['fi
python书籍推荐:Python数据科学手册
所属网站分类: 资源下载 > python电子书 作者:today 链接:http://www.pythonheidong.com/blog/article/448/ 来源:python黑洞网 内容简介 本书是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.本书共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操
干货!小白入门Python数据科学全教程
前言 本文讲解了从零开始学习Python数据科学的全过程,涵盖各种工具和方法 你将会学习到如何使用python做基本的数据分析 你还可以了解机器学习算法的原理和使用 说明 先说一段题外话.我是一名数据工程师,在用SAS做分析超过5年后,决定走出舒适区,寻找其它有效的数据分析工具,很快我发现了Python! 我非常喜欢编程,这是我真正喜欢做的事情.事实证明,编程并没有想象中的那么难. 我在一周之内学习了Python的基本语法,接着我一方面继续深入探索Python,另一方面帮助其他人学习这门语言.P
python主要探索函数
在数据分析中,Python的主要探索函数 Python中主要用于书探索的是pandas(数据分析)和matplotlib(数据可视化).其中pandas提供了大量的数据探索的工具与数据相关的函数,这些数据探索可大致分为统计特征函数与统计作图函数,而作图函数依赖于mayplotlib,所以往往又会跟matplotlib结合在一起使用 基本统计特征的函数:统计特征用于计算数据的均值,方差,标准差,分位数,相关系数和协方差等,这些统计特征能反映出数据的整体分布 方法名 函数功能 所属库 corr()
《数据可视化之美》高清PDF全彩版|百度网盘免费下载|Python数据可视化
<数据可视化之美>高清PDF全彩版|百度网盘免费下载|Python数据可视化 提取码:i0il 内容简介 <数据可视化之美>内容简介:可视化是数据描述的图形表示,旨在一目了然地揭示数据中的复杂信息.可视化的典型如纽约地铁图和人脑图.成功的可视化的美丽之处既在于其艺术设计,也在于其通过对细节的优雅展示,能够有效地产生对数据的洞察和新的理解. 在<数据可视化之美>中,20多位可视化专家包括艺术家.设计师.评论家.科学家.分析师.统计学家等,展示了他们如何在各自的学科领域内开
送你一个Python 数据排序的好方法
摘要:学习 Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法.最常见的数据分析是使用电子表格.SQL或pandas 完成的.使用 Pandas 的一大优点是它可以处理大量数据并提供高性能的数据操作能力. 本文分享自华为云社区<Pandas Sort:你的 Python 数据排序指南>,作者:Yuchuan. 学习 Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法.最常见的数据分析是使用电子表格.SQL或pandas 完成的.使用 Pandas
关于python数据序列化的那些坑
-----世界上本来没那么多坑,python更新到3以后坑就多了 无论哪一门语言开发,都离不了数据储存与解析,除了跨平台性极好的xml和json之外,python要提到的还有自身最常用pickle模块.在使用上,python的常用模块接口漂亮而简单,而且json跟pickle二者使用一模一样.首先来看一下用法,代码如下: import json,pickle #导入模块. data = { 'name' : "lixin", 'sex' :"female", 'he
Python数据可视化编程实战——导入数据
1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过该对象遍历所读取文件的所有行. #!/usr/bin/env python import csv filename = 'ch02-data.csv' data = [] try: with open(filename) as f: reader = csv.reader(f) c = 0 for
热门专题
ESP8266SDK怎么做
idea中jsp页面println报错
springboot集成mybatis 动态切换数据源
MyBatis实体非数据库字段的属性注解
python 求线性基
IIS 集成模式 静态文件
python的main函数怎么写
linux top和free区别
Serverful技术架构
在python中x=y,y=x可以互换x和y的值吗
C# json map映射
sqlserver 检测view
sqlmap识别waf命令
linq的跟踪和非跟踪是啥意
springboot配置文件怎么配置自定义异常处理
mysql innodb 无法启动修复
flask 代理 百度
js随机生成正态分布数据
java重写情况总结
机器学习例题matlab