数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法.标准差法).折线型方法(如三折线法).曲线型方法(如半正态性分布).不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循. 常见的方法有:min-max标准化(Min-max normalization),log函数转换,atan函数转换,z-score标准化(zero-mena n
Python 入门之代码块.小数据池 与 深浅拷贝 1.代码块 (1)一个py文件,一个函数,一个模块,终端中的每一行都是代码块 (代码块是防止我们频繁的开空间降低效率设计的,当我们定一个变量需要开辟空间的时候,它会先去检测我们定义的这个值在空间中有没有进行开辟,如果没有开辟就开辟一个空间,如果内存中开辟过就使用同一个). (2)整型(int) : -5 ~ 正无穷 a = -6 b = -6 print(a is b) a = 1000 b = 1000 print(id(a),id(b))
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Feature extration|特征提取 Preprocessing data|数据预处理 1 Dataset transformations scikit-learn provides a library of transformers, which may clean (see Preproce
1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过该对象遍历所读取文件的所有行. #!/usr/bin/env python import csv filename = 'ch02-data.csv' data = [] try: with open(filename) as f: reader = csv.reader(f) c = 0 for