首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Python数模笔记
2024-08-31
Python数模笔记-Scipy库(1)线性规划问题
1.最优化问题建模 最优化问题的三要素是决策变量.目标函数和约束条件. (1)分析影响结果的因素是什么,确定决策变量 (2)决策变量与优化目标的关系是什么,确定目标函数 (3)决策变量所受的限制条件是什么,确定约束条件 最优化问题的建模,通常按照以下步骤进行: (1)问题定义,确定决策变量.目标函数和约束条件: (2)模型构建,由问题描述建立数学方程,并转化为标准形式的数学模型: (3)模型求解,用标准模型的优化算法对模型求解,得到优化结果: (4)模型检验,统计检验和灵敏度分析. 欢迎关注 Y
Python数模笔记-NetworkX(3)条件最短路径
1.带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题,通常是求最短加权路径. 条件最短路径,指带有约束条件.限制条件的最短路径.例如,顶点约束,包括必经点或禁止点的限制:边的约束,包括必经路段或禁止路段:还包括无权路径长度的限制,即经过几步到达终点.进一步地,还有双目标限制的最短路径问题,求最短距离中花费最小的路线:交通限制条件下的最短路径问题,需要考虑转向限制和延误的约束. 求解带有限制条件的最短路径问题,总体来说可以分为两类基本方法:一类是基于不带限制条件的最短路
Python数模笔记-StatsModels 统计回归(4)可视化
1.如何认识可视化? 图形总是比数据更加醒目.直观.解决统计回归问题,无论在分析问题的过程中,还是在结果的呈现和发表时,都需要可视化工具的帮助和支持. 需要指出的是,虽然不同绘图工具包的功能.效果会有差异,但在常用功能上相差并不是很大.与选择哪种绘图工具包相比,更重要的是针对不同的问题,需要思考选择什么方式.何种图形去展示分析过程和结果.换句话说,可视化只是手段和形式,手段要为目的服务,形式要为内容服务,这个关系一定不能颠倒了. 因此,可视化是伴随着分析问题.解决问题的过程而进行思考.设计和实现
Python数模笔记-StatsModels 统计回归(1)简介
1.关于 StatsModels statsmodels(http://www.statsmodels.org)是一个Python库,用于拟合多种统计模型,执行统计测试以及数据探索和可视化. 2.文档 最新版本的文档位于: https://www.statsmodels.org/stable/ 欢迎关注 Youcans 原创系列,每周更新数模笔记 Python数模笔记-PuLP库 Python数模笔记-StatsModels统计回归 Python数模笔记-Sklearn Python数模笔记-N
Python数模笔记-Sklearn(1) 介绍
1.SKlearn 是什么 Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包. Sklearn 主要用Python编写,建立在 Numpy.Scipy.Pandas 和 Matplotlib 的基础上,也用 Cython编写了一些核心算法来提高性能. Sklearn 包括六大功能模块: 分类(Classification):识别样本属于哪个类别,常用算法有 SVM(支持向量机).nearest neighbors(最近邻).random forest(
Python数模笔记-(1)NetworkX 图的操作
1.NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包,用于创建.操作和研究复杂网络的结构.动力学和功能. NetworkX 可以以标准和非标准的数据格式描述图与网络,生成图与网络,分析网络结构,构建网络模型,设计网络算法,绘制网络图形. NetworkX 提供了图形的类.对象.图形生成器.网络生成器.绘图工具,内置了常用的图论和网络分析算法,可以进行图和网络的建模.分析和仿真. NetworkX 的官网和文档 官网地址:https://net
Python数模笔记-Sklearn(4)线性回归
1.什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系.回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利用建立的模型和估计的模型参数进行预测或控制.按照输入输出变量关系的类型,回归分析可以分为线性回归和非线性回归. 线性回归(Linear regression) 假设样本数据集中的输出变量(y)与输入变量(X)存在线性关系,即输出变量是输入变量的线性组合.线性模型是最简单的模型,也是非常重要和应用广泛
Python数模笔记-Sklearn(2)样本聚类分析
1.分类的分类 分类的分类?没错,分类也有不同的种类,而且在数学建模.机器学习领域常常被混淆. 首先我们谈谈有监督学习(Supervised learning)和无监督学习(Unsupervised learning),是指有没有老师,有没有纪委吗?差不多.有老师,就有正确解法,就有标准答案:有纪委,就会树学习榜样,还有反面教材. 有监督学习,是指样本数据已经给出了正确的分类,我们通过对正确分类的样本数据进行学习,从中总结规律,获取知识,付诸应用.所以,监督学习的样本数据,既提供了特征值又提供了
Python数模笔记-Sklearn(3)主成分分析
主成分分析(Principal Components Analysis,PCA)是一种数据降维技术,通过正交变换将一组相关性高的变量转换为较少的彼此独立.互不相关的变量,从而减少数据的维数. 1.数据降维 1.1 为什么要进行数据降维? 为什么要进行数据降维?降维的好处是以略低的精度换取问题的简化. 人们在研究问题时,为了全面.准确地反映事物的特征及其发展规律,往往要考虑很多相关指标的变化和影响.尤其在数据挖掘和分析工作中,前期收集数据阶段总是尽量收集能够获得的各种数据,能收尽收,避免遗漏.多变
Python数模笔记-Sklearn(5)支持向量机
支持向量机(Support vector machine, SVM)是一种二分类模型,是按有监督学习方式对数据进行二元分类的广义线性分类器. 支持向量机经常应用于模式识别问题,如人像识别.文本分类.手写识别.生物信息识别等领域. 1.支持向量机(SVM)的基本原理 SVM 的基本模型是特征空间上间隔最大的线性分类器,还可以通过核函数方法扩展为非线性分类器. SVM 的分割策略是间隔最大化,通过寻求结构化风险最小来提高模型的泛化能力,实现经验风险和置信范围的最小化.SVM 可以转化为求解凸二次规划
Python数模笔记-NetworkX(2)最短路径
1.最短路径问题的常用算法 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 1.1 最短路径长度与最短加权路径长度 在日常生活中,最短路径长度与最短路径距离好像并没什么区别.但在具体的图论问题中却可能是不同的概念和问题,经常会被混淆. 图论中有无权图和有权图,无权图中的边没有权,赋权图的边带有权,可以表示距离.时间.费用或其它指标.在问题文字描述中,往往并不直接指出是无权图还是有权图,这时就要注意最短路径与最短加权路径的区别.路径长度是把每个顶点到相邻顶点的
Python数模笔记-PuLP库(1)线性规划入门
1.什么是线性规划 线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配.生产调度和混合问题.例如: max fx = 2*x1 + 3*x2 - 5*x3 s.t. x1 + 3*x2 + x3 <= 12 2*x1 - 5*x2 + x3 >= 10 x1 + x2 + x3 = 7 x1, x2, x3 >=0 线性规划问题的建模和求解,通常按照以下步骤进行: (1)问题定义,确定决策变量.目标函数和约束条件:
Python数模笔记-PuLP库(2)线性规划进阶
1.基于字典的创建规划问题 上篇中介绍了使用 LpVariable 对逐一定义每个决策变量,设定名称.类型和上下界,类似地对约束条件也需要逐一设置模型参数.在大规模的规划问题中,这样逐个定义变量和设置模型参数非常繁琐,效率很低.Pulp 库提供了一种快捷方式,可以结合 Python语言的循环和容器,使用字典来创建问题. (1)使用快捷方法建立一个规划问题,可以用字典类型(dict) 建立多个变量,例如: name = ['废料1', '废料2', '废料3', '废料4', '镍', '铬',
Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 0. 前言:新冠疫情成了数模竞赛的背景帝 新冠疫情爆发以来,不仅严重影响到全球的政治和经济,也深刻和全面地影响着社会和生活的方方面面,甚至已经成为数学建模竞赛的背景帝. 传染病模型本来就是数学建模课程中的常见问题和模型.随着疫情的影响越来越严重.广泛和持久,不仅疫情传播.疫
当Python与数模相遇
数模有一个题目要处理杭州自行车在每个站点可用数量和已经借出数量,这数据在www.hzbus.cn上可以获取,它是10分钟更新一次的.这些数据手动获取,需要不停的刷页面,从6:00am到9:00pm,显然不可取. 过程: 先用Chrome抓包,找到了相应数据的页面URL,然后写个脚本把此URL的html代码,并且设置计时器,保存到本地;分析html代码,获得数据所在处的特点,然后写个脚本提取它们,并保存到指定文件中. 具体: 1.抓包就掠过吧,Chrome还是有很多开发人员应该掌握的工具的
python核心编程--笔记
python核心编程--笔记 的解释器options: 1.1 –d 提供调试输出 1.2 –O 生成优化的字节码(生成.pyo文件) 1.3 –S 不导入site模块以在启动时查找python路径 1.4 –v 冗余输出(导入语句详细追踪) 1.5 –m mod 将一个模块以脚本形式运行 1.6 –Q opt 除法选项(参阅文档) 1.7 –c cmd 运行以命令行字符串心事提交的python脚本 1.8 file 以给定的文件运行python脚本 2 _在解释器中表示最后
【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####
Python源代码剖析笔记3-Python运行原理初探
Python源代码剖析笔记3-Python执行原理初探 本文简书地址:http://www.jianshu.com/p/03af86845c95 之前写了几篇源代码剖析笔记,然而慢慢觉得没有从一个宏观的角度理解python执行原理的话,从底向上分析未免太easy让人疑惑.不如先从宏观上对python执行原理有了一个基本了解,再慢慢探究细节.这样或许会好非常多. 这也是近期这么久没有更新了笔记了,一直在看源代码剖析书籍和源代码.希望能够从一个宏观层面理清python执行原理.人说读书从薄读厚,再从
Python网络爬虫笔记(五):下载、分析京东P20销售数据
(一) 分析网页 下载下面这个链接的销售数据 https://item.jd.com/6733026.html#comment 1. 翻页的时候,谷歌F12的Network页签可以看到下面的请求. 从Preview页签可以看出,这个请求是获取评论信息的 2. 对比第一页.第二页.第三页-请求URL的区别 可以发现 page=0.page=1,0和1指的应该是页数. 第一页的 request url:没有这个rid=0& . 第二.三页-的request url:多了这个ri
0003.5-20180422-自动化第四章-python基础学习笔记--脚本
0003.5-20180422-自动化第四章-python基础学习笔记--脚本 1-shopping """ v = [ {"name": "电脑","price":"1999"}, {"name": "鼠标", "price": "10"}, {"name": "游艇", &q
热门专题
HBuilderX插件安装scss/sass
PostgreSQL 清除去年的数据
openwrt开机启动
中国地图统计分布echart
json 对象内容按原对象替换
烽火HG220 口令
Java网络编程数据库的设计
centos samba服务设置开机启动
ER 图 relationship identifyng
linux subversion源代码构建
pom.xml(unknown) ()可以更改吗
小程序h5拉起微信支付
i2c_transfer失败
flume spooldir source 递归监听
php 可变参数函数
net core 6.0 定时任务
gpu能做加减乘除吗
microsoft excel application权限
plsql导出pde报错
adb 如何pull一个文件夹