首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python 统计数据缺失率到表格
2024-08-18
python 连接 oracle 统计指定表格所有字段的缺失值数
python连接oracle -- qlalchemy import cx_Oracle as co import pandas as pd from sqlalchemy import create_engine sql_select = ''' ...''' db = create_engine('oracle://qmcb:qmcb@localhost:1521/tqmcbdb') #test_data = pd.read_excel("data/tmp001.xlsx")
Python导出数据到Excel表格-NotImplementedError: formatting_info=True not yet implemented
在使用Python写入数据到Excel表格中时出现报错信息记录:“NotImplementedError: formatting_info=True not yet implemented” 报错分析:看报错信息是未实现的错,其实就是版本不兼容 我在代码中写的是使用xlrd库的方法进行Excel处理,但是我创建的Excel是office 2016版本的,而xlrd只支持2007以前的版本,导致不兼容报错 解决办法1:将模板文件另存为Excel 2003版本的文件格式 解决方法2:使用Python
Python利用openpyxl带格式统计数据(1)- 处理excel数据
统计数据的随笔写了两篇了,再来一篇,这是第三篇,前面第一篇是用xlwt写excel数据,第二篇是用xlwt写mysql数据.先贴要处理的数据截图: 再贴最终要求的统计格式截图: 第三贴代码: 1 ''' 2 #利用openpyxl向excel模板写入数据 3 ''' 4 #首先写本地excel的 5 import xlwt 6 import xlrd 7 import openpyxl 8 9 #提取数据 10 xlsx = xlrd.open_workbook("要处理的数据表路径/xxx.x
Python数据展示 - 生成表格图片
前言 前一篇文章介绍了推送信息到企业微信群里,其中一个项目推送的信息是使用Python自动生成的表格,本文来讲讲如何用Python生成表格图片. 选一个合适库 Python最大的优点就是第三方库丰富,基本你要什么功能,都能找到别人实现好的库,几行代码一调用就完事了. Pytable 项目地址:htt
Python爬网——获取安卓手机统计数据
[本文出自天外归云的博客园] 1. 在安卓网上对热门机型进行爬网,取前五十: # -*- coding: utf-8 -*- import requests,re from bs4 import BeautifulSoup def get_rank_list(): s = requests.Session() rank_list = [] for pageNum in xrange(1,10): url = "http://product.hiapk.com/mobile/p"+str
python统计文本中每个单词出现的次数
.python统计文本中每个单词出现的次数: #coding=utf-8 __author__ = 'zcg' import collections import os with open('abc.txt') as file1:#打开文本文件 str1=file1.read().split(' ')#将文章按照空格划分开 print "原文本:\n %s"% str1 print "\n各单词出现的次数:\n %s" % collections.Counter(s
python和数据科学(Anaconda)
Python拥有着极其丰富且稳定的数据科学工具环境.遗憾的是,对不了解的人来说这个环境犹如丛林一般(cue snake joke).在这篇文章中,我会一步一步指导你怎么进入这个PyData丛林. 你可能会问,很多现有的PyData包推荐列表怎么样?我觉得对新手来说提供太多的选择可能会受不了.因此这里不会提供推荐列表,我要讨论的范围很窄,只集中于10%的工具,但它们可以完成你90%的工作.当你掌握这些必要的工具后,你就可以浏览PyData工具的长列表了,选择自己接下来要使用的. 值得一提的是,我介
使用POI实现数据导出Excel表格
package cn.sh.bzt.kwj.action; import java.io.IOException; import java.io.OutputStream; import java.text.SimpleDateFormat; import java.util.ArrayList; import java.util.Calendar; import java.util.Date; import java.util.List; import javax.annotation.Res
统计数据方面SQL与HQL
因为HQL是面向对象的,所以对于统计数据方面使用HQL时不合适的,其实HQL最终还是会转化成SQL语句,项目里使用HQL语句应该是为了标准规范化. 统计的数据:同一个表,同一个字段,不同属性,统计不同属性的记录数: 例如:有一个房间表格,如图所示: 现在我要做的是统计各种房间可用的数量分别是多少. 但是这个对于HQL语句是运行不同的,所以在DaoImp层,使用了查询SQL 另外:说明一下对于List无法直接调用属性的话,例如(#list.name,#list.password) 对于使用iter
Pandas日期数据处理:如何按日期筛选、显示及统计数据
前言 pandas有着强大的日期数据处理功能,本期我们来了解下pandas处理日期数据的一些基本功能,主要包括以下三个方面: 按日期筛选数据 按日期显示数据 按日期统计数据 运行环境为 windows系统,64位,python3.5. 1 读取并整理数据 首先引入pandas库 import pandas as pd 从csv文件中读取数据 df = pd.read_csv('date.csv', header=None) print(df.head(2)) 0 1 0 2013-10-24 3
生成统计数据并导出Excel
需求:看如下表格的统计需求 生产调度中心部门需要从IT技术部门得到这些统计数据 步骤: (1)获取所有的子公司列表 (2)遍历所有的子公司,获取每个子公司的库存信息 (3)遍历所有的库存信息,并对库存信息进行扩充 (4)生成汇总库存信息(这里使用Redis进行生成) (5)使用Excel工具类将汇总统计数据导出Excel 问题: (1)为什么使用控制台后台生成统计数据 a. 因为在导出Excel的时候可能会出现120s的timeout问题,因为导出Excel是在浏览器操作完成的,web浏览器使用
数据挖掘(二)用python实现数据探索:汇总统计和可视化
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处理,另一方面在进行特征工程时可以给我们一些思路.所以这样一个过程在数据挖掘中还是蛮有用的,相信大家在网上看过不少数据挖掘比赛的Kernel,一般一上来都先是个数据探索的过程.之前听过一个老师讲课,说数据探索过程其实可有可无,直接预处理猛搞,但典型的口嫌体正直,在演示一个比赛的流程时,还是先进行了汇总
将Highcharts图表数据生成Table表格
有的时候,我们不仅仅需要漂亮的统计图来显示统计结果,还需要在统计图下方一个表格可以更加直观的展现各类数据.既然统计图都显示出来了,那我们可以根据统计图的各元素生成表格了. 首先,先显示统计图. Html----通过一个查询按钮,根据查询条件,查询满足条件的数据,显示到统计图中. <a onclick="Query();" >查询</a><center> <div id="chartPro" style="wid
《零起点,python大数据与量化交易》
<零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库·zw大数据"项目,刚刚启动. 因为时间紧,只花了半天时间,整理框架和目录. 说是v0.1版,但核心框架已经ok:从项目角度而言,完成度,已经超过70%,剩下的只是体力活. 完成全本书,需要半年以上连续时间,本人没空,大家不要再问:"什么时间可以完成." 配合zwPython,这
Python数据挖掘——数据概述
Python数据挖掘——数据概述 数据集由数据对象组成: 数据的基本统计描述 中心趋势度量 均值 中位数 众数 中列数 数据集的最大值和最小值的平均 度量数据分布 极差 最大值与最小值的差 四分位数 方差 四分位数极差 数据基本统计描述的图形显示 一元分布 分位数图 分位数-分位数图(q-q图) 直方图 二元分布 散点图 数据可视化 1.基于像素的可视化技术 2.几何投影可视化技术 3.基于图符的可视化技术 4.层次可视化技术 度量数据的相似性和相异性 相似 和相异 都称 邻近性 如果不相似,则
Python和数据科学的起步指南
http://python.jobbole.com/80853/ Python拥有着极其丰富且稳定的数据科学工具环境.遗憾的是,对不了解的人来说这个环境犹如丛林一般(cue snake joke).在这篇文章中,我会一步一步指导你怎么进入这个PyData丛林. 你可能会问,很多现有的PyData包推荐列表怎么样?我觉得对新手来说提供太多的选择可能会受不了.因此这里不会提供推荐列表,我要讨论的范围很 窄,只集中于10%的工具,但它们可以完成你90%的工作.当你掌握这些必要的工具后,你就可以浏览Py
Python之数据规整化:清理、转换、合并、重塑
Python之数据规整化:清理.转换.合并.重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象堆叠到一起. 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值. 2. 数据风格的DataFrame合并操作 2.1 数据集的合并(merge)或连接(jion)运算时通过一个或多个键将行链接起来的.如果没有指定,merge就会将重叠列的列名当做键
Python将多个excel表格合并为一个表格
Python将多个excel表格合并为一个表格 生活中经常会碰到多个excel表格汇总成一个表格的情况,比如你发放了一份表格让班级所有同学填写,而你负责将大家的结果合并成一个.诸如此类的问题有很多.除了人工将所有表格的内容一个一个复制到汇总表格里,那么如何用Python自动实现这些工作呢~ 我不知道有没有其他更方便的合并方法,先用Python实现这个功能,自己用就很方便了. 比如,在文件夹下有如下7个表格(想象一下有100个或更多的表格需要合并) 作为样例,每个表格的内容均为 运行程序,将7个表
Python验证数据的抽样分布类型
假如要对一份统计数据进行分析,一般其来源来自于社会调研/普查,所以数据不是总体而是一定程度的抽样.对于抽样数据的分析,就可以结合上篇统计量及其抽样分布的内容,判断数据符合哪种分布.使用已知分布特性,可以完成对总体的统计分析. 本文使用python函数判断数据集是否符合特定抽样分布. 数据来源 本次试验使用kagglehttps://www.kaggle.com/datasets上的公开数据集,可以通过搜索框进行数据集搜索. 通过搜索「income」关键值,最后决定使用https://www.ka
为什么说 Python 是数据科学的发动机(一)发展历程(附视频中字)
为什么说 Python 是数据科学的发动机(一)发展历程(附视频中字) 在PyData Seattle 2017中,Jake Vanderplas介绍了Python的发展历程以及最新动态.在这里我们把内容分成上下两篇,先给大家带来上篇--Python的发展历程. 主讲人: Jake Vanderplas是华盛顿大学eScience研究所物理科学研究的负责人.该研究所负责跨学科项目,旨在支持科学领域在数据方面发现.Jake的研究领域包括天文学.天体物理学.机器学习以及可伸缩计算.此外,他是许多开源
如何用Python统计《论语》中每个字的出现次数?10行代码搞定--用计算机学国学
编者按: 上学时听过山师王志民先生一场讲座,说每个人不论干什么,都应该学习国学(原谅我学了计算机专业)!王先生讲得很是吸引我这个工科男,可能比我的后来的那些同学听课还要认真些,当然一方面是兴趣.一方面是跨了学科听课,内容引人入胜,主要还是我懂得太少了,哈!我记得当时讲座的主题是有关孔子与齐鲁大地的关系,也正是那场讲座让我下决心跨学院选修了<中国古代思想文化史研究>,才让我对于诸子百家思想有了更深的认识,教授们轮番上阵,让我们学习到我们中华民族先贤智慧.也认识了历史学和中国哲学专业的同学,其中还
热门专题
mysql 存储过程将查询的内容作为入参
nm 的符号类型表示什么
wpf datagrid 实时更新触发排序
gin 参数验证time_format
.net使用RedLock
visio professional 2013激活工具
ftp服务器间断性有几台机器登不上
spark作业提交流程
Django url转义
抛物线焦点发出的光线
mybatisplus 使用jdbcTemplate
web audio api 获取当前播放进度条
antd form 上传文件之后,显示未上传
简单 pytorch 训练demo
spring es的UpdateRequest的nested
npoi导出excel百万条数据
交流分量可以微分线性化嘛
PB级 检索查询秒级
echarts防止重复出发点击事件
取消stash apply