Tensorflow实现学习率衰减 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Deeplearning AI Andrew Ng Tensorflow1.2 API 学习率衰减(learning rate decay) 加快学习算法的一个办法就是随时间慢慢减少学习率,我们将之称为学习率衰减(learning rate decay) 概括 假设你要使用mini-batch梯度下降法,mini-batch数量不大,大概64或者128个样本,但是在迭代过程中会有噪音,下降朝向这
每隔一定的epoch调整学习率 def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_g
参考:https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate torch.optim.lr_scheduler提供了几种方法来根据迭代的数量来调整学习率 自己手动定义一个学习率衰减函数: def adjust_learning_rate(optimizer, epoch, lr): """Sets the learning rate to the initial LR decayed by