首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言时间序列多个图在一起
2024-09-05
R语言-时间序列图
1.时间序列图 plot()函数 > air<-read.csv("openair.csv") > plot(air$nox~as.Date(air$date,"%d/%m/%Y %H:%M"), #把年月日时分秒转换成日期格式 + type="l", + xlab="Time", ylab="Concentration (ppb)", + main="Time trend of
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
R语言绘制箱型图
箱形图是数据集中数据分布情况的衡量标准.它将数据集分为三个四分位数.盒形图表示数据集中的最小值,最大值,中值,第一四分位数和第四四分位数. 通过为每个数据集绘制箱形图, 比较数据集中的数据分布也很有用. R中的盒形图通过使用boxplot()函数来创建. 基本公式为: boxplot(x, data, notch, varwidth, names, main) x - 是向量或公式.data - 是数据帧.notch - 是一个逻辑值,设置为TRUE可以画出一个缺口.varwidth - 是一个
R语言中的箱图介绍 boxplot
画箱图的函数: boxplot()##help(boxplot)查询具体用法 图例的解释: 如下图,是两个简单的箱图. 中间的箱子的上下边,分别是第三,一个四分位数. 中间的黑线是第二四分位数(中位数). 设r是变量的四分位距,箱图上方的小横线是小于或等于第三个四分位数+1.5*r的最大观测值.同时下方的小横线是,大于等于第一个四分位数减去1.5*r的最大的观测值. 图中的小白圈,代表很大可能性上是离群点(outlier).(在其他图中也适用) 总结: 箱图给出了大量的信息,不仅
R语言-时间序列
时间序列:可以用来预测未来的参数, 1.生成时间序列对象 sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20, 22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35) # 1.生成时序对象 tsales <- ts(sales,start = c(2003,1),frequency = 12) plot(tsales) # 2.获得对象信息 start(tsales) end(tsales)
R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)
箱线图 箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图.在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具.就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义. 下面这张图展示了Bar plot.Box plot.Volin plot和Bean plot对数据分布的反应.从Bar plot上只能看到数据标准差或标准误不同:Box plot可以看到数据分布的集中性不同:Violin
R语言绘图:雷达图
使用fmsb包绘制雷达图 library("fmsb") radarfig <- rbind(rep(90, 4), rep(60, 4), c(86.17, 73.96, 82.70, 69.55)) #求平均值 radarfig <- as.data.frame(radarfig) #转化为data.frame colnames(radarfig) <- c("服务方式\n完备度", "在线服务\n成熟度", "办
R语言画云字图
install.packages('wordcloud') library(wordcloud) colors=c('red','blue','green','yellow','purple') data=read.csv("data.csv") wordcloud(data$words, data$freq, scale=c(10,0.5),min.freq=-Inf,max.words=Inf,colors=colors,random.order=F,random.color=F,
R语言 ggplot2 画平滑图
library(splines) library(ggplot2) dt1 <- structure(list(Age = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("o80", "u80"), class = "factor"), NoP = c(47L, 5
基于R语言的时间序列指数模型
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列
R语言︱情感分析—词典型代码实践(最基础)(一)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中的词语需要人工去选择,但是这样的选择会很有目标以及针对性.本文代码大多来源于<数据挖掘之道>的情感分析章节.本书中还提到了监督算法式的情感分析,可见博客: R语言︱情感分析-基于监督算法R语言实现笔记. 可以与博客 R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等)对着看. 词典型
Rserve详解,R语言客户端RSclient【转】
R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u011955252/article/details/65442783 http://blog.fens.me/series-r/ R的极客理想系列文章 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域
R语言图表
条形图 在R语言中创建条形图的基本语法是 barplot(H, xlab, ylab, main, names.arg, col) H是包含在条形图中使用的数值的向量或矩阵 xlab是x轴的标签 ylab是y轴的标签 main是条形图的标题 names.arg是在每个条下出现的名称的向量 col用于向图中的条形提供颜色 组合条形图和堆积条形图 # Create the input vectors. colors <- c("green","orange",
【R语言学习】时间序列
时序分析会用到的函数 函数 程序包 用途 ts() stats 生成时序对象 plot() graphics 画出时间序列的折线图 start() stats 返回时间序列的开始时间 end() stats 返回时间序列的结束时间 frequency() stats 返回时间序列中时间点的个数 window() stats 对时序对象取子集 ma() forecast 拟合一个简单的移动平均模型 stl() stats 用LOESS光滑将时序分解为季节项.趋势项和随机项 monthplot()
第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
R语言绘制QQ图
无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline(w)> w <- c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5,+ 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0)> qqnorm(w);qqline(w)
R语言画棒状图(bar chart)和误差棒(error bar)
假设我们现在有CC,CG,GG三种基因型及三种基因型对应的表型,我们现在想要画出不同的基因型对应表型的棒状图及误差棒.整个命令最重要的就是最后一句了,用arrows函数画误差棒.用到的R语言如下: data<-read.csv("E:/model/data.csv",sep=" ",header=T)#导入数据data mean_CC<-mean(data[,1])#计算CC基因型对应的表型的平均值 mean_GG<-mean(data[,2])
R语言-画线图
R语言分高水平作图函数和低水平作图函数 高水平作图函数:可以独立绘图,例如plot() 低水平作图函数:必须先运行高水平作图函数绘图,然后再加画在已有的图上面 第一种方法:plot()函数 > sales<-read.csv("dailysales.csv", header=TRUE) #读取文件和列名 > plot(sales$units~as.Date(sales$date,"%d/%m/%y"), #修改日期格式 + type="l
R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接 https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram
热门专题
dxp的pcb文件里,同一个结点连线如何高亮显示
php实现无符号右移
修改host文件 Burpsuite
mysql 批量生成注释脚本
JavaScript 一统江湖
制作docker 镜像上传阿里云
int转float最多丢失多少精度
c语言 __FILE__ 缩短目录
linux 查看 正在 读写 文件
手机TERMUX终端怎么挂阿里云
python统计课程门数
js object 遍历
linux安装新版本thrift
java静态资源访问
rocketmq 消息删除
电子邮箱服务器url
Python个性化推荐
PopupWindow 动态添加
django 预约案例
java打印快递面单