首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言 caret 保存训练模型
2024-11-09
R语言机器学习之caret包运用
在大数据如火如荼的时候,机器学习无疑成为了炙手可热的工具,机器学习是计算机科学和统计学的交叉学科, 旨在通过收集和分析数据的基础上,建立一系列的算法,模型对实际问题进行预测或分类. R语言无疑为我们提供了很好的工具,它正是计算机科学和统计科学结合的产物,开源免费, 相对于Python.Orange Canvas.Weka.Kinme这些免费的数据挖掘软件来说,更容易上手,统计图形也更加美观. 今天在这里和大家介绍一下Caret机器学习包的一些基本用法. 一.数据收集 下载kern
碎片︱R语言与深度学习
笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用.整理一下目前我看到的R语言的材料: ------------------------------------------------------------ 近期,弗莱堡大学的Oksana Kutina 和 Stefan Feuerriegel发表了一篇名为<深入比较四个R中的深度学习包>的博文.其中,四个R包的综述如下: MXNet: MXNet深度学习库的R接
R语言 常见模型
转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到的问题不是我应该采用哪个算法来处理我的数
机器学习与R语言
此书网上有英文电子版:Machine Learning with R - Second Edition [eBook].pdf(附带源码) 评价本书:入门级的好书,介绍了多种机器学习方法,全部用R相关的包实现,案例十分详实,理论与实例结合. 目录 第一章 机器学习简介 第二章 数据的管理和理解 第三章 懒惰学习--使用近邻分类 第四章 概率学习--朴素贝叶斯分类 第五章 分而治之--应用决策树和规则进行分类 第六章 预测数值型数据--回归方法 第七章 黑箱方法--神经网络和支持向量机 第八章 探
R语言中常用包(二)
数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Microsoft Excel电子表格数据openxlsx:读取Microsoft Excel电子表格数据googlesheets:读取google电子表格数据haven:读取SAS,SPSS和Stata统计软件格式的数据httr:从网站开放的API中读取数据rvest:网页数据抓取包xml2:读取HTML和
r语言 包说明
[在实际工作中,每个数据科学项目各不相同,但基本都遵循一定的通用流程.具体如下] [下面列出每个步骤最有用的一些R包] 1.数据导入以下R包主要用于数据导入和保存数据:feather:一种快速,轻量级的文件格式:在R和python上都可使用readr:实现表格数据的快速导入readxl:读取Microsoft Excel电子表格数据openxlsx:读取Microsoft Excel电子表格数据googlesheets:读取google电子表格数据haven:读取SAS,SPSS和Stata
【机器学习与R语言】13- 如何提高模型的性能?
目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 随机森林 1)训练随机森林 2)评估随机森林性能 1.调整模型参数来提高性能 参数调整:调节模型合适的选项的过程,如股票C5.0决策树模型中的trials参数,神经网络中的调节节点.隐层数目,SVM中的核函数等等. caret包自动调整参数:train函数,为分类和回归的150种不同机器学习模型自动
【机器学习与R语言】11- Kmeans聚类
目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Kmeans聚类 1)基本概念 聚类:无监督分类,对无标签案例进行分类. 半监督学习:从无标签的数据入手,是哦那个聚类来创建分类标签,然后用一个有监督的学习算法(如决策树)来寻找这些类中最重要的预测指标. kmeans聚类算法特点: kmeans算法涉及将n个案例中的每一个案例分配到指定k个类中的一个(
【机器学习与R语言】9- 支持向量机
目录 1.理解支持向量机(SVM) 1)SVM特点 2)用超平面分类 3)对非线性空间使用核函数 2. 支持向量机应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高性能 1.理解支持向量机(SVM) 1)SVM特点 支持向量机和神经网络都是"黑箱模型"的代表:潜在的模型基于复杂的数学系统,而且结果难以解释. SVM的目标是创建一个平面边界("超平面"),使得任何一边的数据划分都是均匀的.结合了kNN和线性回归. 几乎适用于所有的学习任务
R语言作为BI中ETL的工具
R语言作为BI中ETL的工具,增删改 R语言提供了强大的R_package与各种数据库进行数据交互. 外加其强大数据变换清洗函数,为ETL提供一条方便快捷的道路. RODBC ROracal RMysql Rmongodb http://mirrors.ustc.edu.cn/CRAN/web/packages/rmongodb/vignettes/rmongodb_cheat_sheet.pdf step1 新建连接con,并查看其信息 library(RODBC) con<-odbcConn
R语言学习笔记之: 论如何正确把EXCEL文件喂给R处理
博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html ---- 前言: 应用背景兼吐槽 继续延续之前每个月至少一次更新博客,归纳总结学习心得好习惯. 这次的主题是论R与excel的结合,又称 论如何正确把EXCEL文件喂给R处理 分为: 1. xlsx包安装及注意事项 2.用vba实现xlsx批量转化csv 以及,这个的对象,针对跟我一样那些从R开始接触编程的,一直以来都是用excel做数据分析的人……编程大牛请轻拍 之所以要研究这个,是因为最近
R语言-Kindle特价书爬榜示例 & 输出HTML小技巧
博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html ---- 自从买了kindle以后,总是想要定期刷有没有便宜的书,amazon经常有些1元/2元的书打特价,但是每次都去刷那些榜单太麻烦了,而且榜单又不能按照价格排名,捞书有点累 所以自己用R语言的rvest包简单写了一个小程序,让它自动按照不同价格区间把特价书给分出来. 主要看的是kindle新品排行榜和最快畅销榜. 销售爬升最快榜: http://www.amazon.cn/gp/move
R语言-用R眼看琅琊榜小说的正确姿势
博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html 目录: 零:写在前面的一些废话 一.R眼看琅琊榜的基本原理 1.导入数据 2.筛选数据 3.多条件筛选对话 4.导出数据 二.R眼看琅琊榜的基础分析 1.快速对文本分章节 2.快速定位人物出场章节 3.快速定位人物互动章节 三.总结 零:写在前面的一些废话 最近电视剧琅琊榜非常之火,除了主角以外,里面很多配角都非常出彩. 原著琅琊榜也是非常精彩的.有些电视剧里没明说的解析,在小说里会明文说出来
R入门<三>-R语言实战第4章基本数据管理摘要
入门书籍:R语言实战 进度:1-4章 摘要: 1)实用的包 forecast:用于做时间序列预测的,有auto.arima函数 RODBC:可以用来读取excel文件.但据说R对csv格式适应更加良好,相应的导入导出均较为方便(read.table, write等) reshape:目前用到rename函数,可以方便的对数据变量重命名 fCalendar:在日期输入处提及,据说对日期运算有奇效,但无具体示例.同理如lubridate sqldf:在数据选取处提及,可代替subset以及各种whe
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
R语言实战(一)介绍、数据集与图形初阶
本文对应<R语言实战>前3章,因为里面大部分内容已经比较熟悉,所以在这里只是起一个索引的作用. 第1章 R语言介绍 获取帮助函数 help(), ? 查看函数帮助 example() 使用函数示例 vignette() 列出vignette文档 vignette("svmdoc") 打开对应文档 管理工作空间 getwd() 显示当前工作目录 setwd("mydirectory") 修改当前工作目录为mydirectory rm(objec
R 语言机器学习同步推进~
教材就是传说中的机器学习和R语言--中文版,大家可以去图书馆借来看看~~~,例子都是来自书上的 首先介绍一下KNN算法,KNN还好吧,说白了就是一个算距离的公式然后以统计的方式呈现出来,以二维平面为例,平面内已知n个区域,每个区域里面有m(n)个点,现在求一个不在n区域内的点与哪一个区域最近,额,为了"恰当",考虑较远的点的影响会覆盖较近点的影响和没有意义的重复计算,只取k(k<n)个较近点参与计算,这就是这个方法的原理了,简单粗暴~~问题还有就是在数据很大的时候怎么选取K值,书
大数据平台R语言web UI应用架构 设计与开发
1. 系统拓扑图 在日常业务分析中,R是非常常用的分析工具,而当数据量较大时,用R语言需要需用更多的时间来完成训练模型,spark作为大规模数据处理框架,采用内存计算,可以短时间内完成大量的数据的处理及计算模型,但缺点是不能图形展示,R语言的sparkly则提供了R语言和Spark的接口,实现了在数据量大的情况下,应用Spark的快速数据分析和处理能力结合R语言的图形化展示功能,方便业务分析,模型训练. 但是要想使多人同时共享R和Spark,还需要其他的相关组件,下图展示了所有相关的组件及应用:
R语言介绍
R语言简介 R语言是一种为统计计算和图形显示而设计的语言环境,是贝尔实验室(Bell Laboratories)的Rick Becker.John Chambers和Allan Wilks开发的S语言的一种实现,提供了一系列统计和图形显示工具.S语言也是目前比较流行的统计软件S-PLUS的基础.http://hovertree.com/ R语言的创始人Ross Ihaka和Robert Gentleman,由于这两位“R之父”的名字都是以R开头,所以就称之为R语言. R语言是一组数据操作,计算和
R语言XML格式数据导入与处理
数据解析 XML是一种可扩展标记语言,它被设计用来传输和存储数据.XML是各种应用程序之间进行数据传输的最常用的工具.它与Access,Oracle和SQL Server等数据库不同,数据库提供了更强有力的数据存储和分析能力,例如:数据索引.排序.查找.相关一致性等,它仅仅是存储数据.事实上它与其他数据表现形式最大的不同是:它极其简单,这是一个看上去有点琐细的优点,但正是这点使它与众不同. 针对XML格式数据,R语言XML包可以对其进行数据导入与处理,详见下面的案例说明. 案例1 直接输入一段标
热门专题
glide centerCrop不起效
XWPFDocument怎样判断换页
kettle job 获取转换结果
selenium 报错截图 创建文件夹
蓝桥杯闰年判断java
Linux系统的lrszs工具下载
gitee vuepress 静态资源
aligned和flalign的区别
mapper.xml放在java中,打包报错
linux mysql 的错误日志文件
springboot 设置数据库最大连接数
Android 即时通讯第三方
linux配置smtp服务器实现发邮件
centos rpcbind停止
linux数据库图形化管理工具
html input调用JS加密
cdlinux网卡版
ISE FIFO复位信号
c# double取小数点后两位,不要四舍五入
element ui ie11卡顿