首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言classification tree可视化
2024-11-10
利用R语言制作出漂亮的交互数据可视化
利用R语言制作出漂亮的交互数据可视化 利用R语言也可以制作出漂亮的交互数据可视化,下面和大家分享一些常用的交互可视化的R包. rCharts包 说起R语言的交互包,第一个想到的应该就是rCharts包.该包直接在R中生成基于D3的Web界面. rCharts包的安装: require(devtools) install_github('rCharts', 'ramnathv') rCharts函数就像lattice函数一样,通过formula.data指定数据源和绘图方式,并通过type指定图表
python调用R语言,关联规则可视化
首先当然要配置r语言环境变量什么的 D:\R-3.5.1\bin\x64; D:\R-3.5.1\bin\x64\R.dll;D:\R-3.5.1;D:\ProgramData\Anaconda3\Lib\site-packages\rpy2; 本来用python也可以实现关联规则,虽然没包,但是可视化挺麻烦的 #!/usr/bin/env python3 # -*- coding: utf-8 -*- from pandas import read_csv def loadDataSet():
R语言 ETL+统计+可视化
这篇文章...还是看文章吧 导入QQ群信息,进行ETL,将其规范化 计算哪些QQ发言较多 计算一天中哪些时段发言较多 计算统计内所有天的日发言量 setwd("C:/Users/liyi/Desktop") a<-readLines("message2.txt",encoding = "UTF-8",skipNul=T) head(a,20) nchar(a) # 除去空白行 newa<-a[nchar(a)>1] length
R语言基础(二) 可视化基础
> which.max(apply(x[c("x1","x2","x3")], 1, sum))49 > x$num[which.max(apply(x[c("x1","x2","x3")], 1, sum))][1] 2005138149 > hist(x$x1) > plot(x$x1,x$x2) > table(x$x1) 80 81 82 83 84
R语言基础(一) 可视化基础
##数据获取 x1=round(runif(100,min=80,max=100)) x2=round(rnorm(100,mean=80, sd=7)) x3=round(rnorm(100,mean=80,sd=18)) x3[which(x3>100)]=100 num=seq(2005138101,length=100) x=data.frame(num,x1,x2,x3) write.table(x, "grade.txt") ##数据分析 y=read.table(&
利用R语言进行交互数据可视化(转)
上周在中国R语言大会北京会场上,给大家分享了如何利用R语言交互数据可视化.现场同学对这块内容颇有兴趣,故今天把一些常用的交互可视化的R包搬出来与大家分享. rCharts包 说起R语言的交互包,第一个想到的应该就是rCharts包.该包直接在R中生成基于D3的Web界面. rCharts包的安装 require(devtools) install_github('rCharts', 'ramnathv') rCharts函数就像lattice函数一样,通过formula.data指定数据源和绘图
第一篇:R语言数据可视化概述(基于ggplot2)
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发套路做一个总体介绍,具体绘图方法(如折线图,柱状图,箱线图等)将在后面的文章中分别进行讲解. 核心理念 1. 将数据,数据相关绘图,数据无关绘图分离 这点可以说是ggplot2最为吸引人的一点.众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程. ggplot2将数据,数据到图
R语言可视化
R语言基础(一) 可视化基础 ##数据获取 x1=round(runif(100,min=80,max=100)) x2=round(rnorm(100,mean=80, sd=7)) x3=round(rnorm(100,mean=80,sd=18)) x3[which(x3>100)]=100 num=seq(2005138101,length=100) x=data.frame(num,x1,x2,x3) write.table(x, "grade.txt") ##数据
最棒的7种R语言数据可视化
最棒的7种R语言数据可视化 随着数据量不断增加,抛开可视化技术讲故事是不可能的.数据可视化是一门将数字转化为有用知识的艺术. R语言编程提供一套建立可视化和展现数据的内置函数和库,让你学习这门艺术.在可视化的技术实现之前,让我们先看看如何选择正确的图表类型. 选择正确的图表类型 基本的展现类型有如下四种: 1. 比较 2. 组成 3. 分布 4. 关系 为了确定哪一种类型的图表适合你的数据,我建议你应该回答一些问题比如, § 在一个图表中你想展现多少个变量? § 每个变量中你会显
R语言笔记4--可视化
接R语言笔记3--实例1 R语言中的可视化函数分为两大类,探索性可视化(陌生数据集,不了解,需要探索里面的信息:偏重于快速,方便的工具)和解释性可视化(完全了解数据集,里面的故事需要讲解别人:偏重全面,美观的工具). R语言中的绘图包: graphics(自带) >探索性 lattice >探索性 ggplot2 >解释性 1.对x1进行直方图分析,绘制直方图hist() 2.探索各科成绩的关联关系,散点图绘制函数plot() 3.列联表分析,列联函数t
R语言中常用包(二)
数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Microsoft Excel电子表格数据openxlsx:读取Microsoft Excel电子表格数据googlesheets:读取google电子表格数据haven:读取SAS,SPSS和Stata统计软件格式的数据httr:从网站开放的API中读取数据rvest:网页数据抓取包xml2:读取HTML和
r语言 包说明
[在实际工作中,每个数据科学项目各不相同,但基本都遵循一定的通用流程.具体如下] [下面列出每个步骤最有用的一些R包] 1.数据导入以下R包主要用于数据导入和保存数据:feather:一种快速,轻量级的文件格式:在R和python上都可使用readr:实现表格数据的快速导入readxl:读取Microsoft Excel电子表格数据openxlsx:读取Microsoft Excel电子表格数据googlesheets:读取google电子表格数据haven:读取SAS,SPSS和Stata
经典书单、站点 —— 大数据/数据分析/R语言
1. 科普.入门 <大数据智能>,刘知远.崔安顺等著: 特色:系统,宏观和全面: 2. R 语言站点 http://langdawei.com/:R 语言数据采集与可视化:
[2]R语言在数据处理上的禀赋之——可视化技术
本文目录 Java的可视化技术 R的可视化技术 二维做图利器plot的参数配置 *权限机制 *plot独有的参数 *plot的type介绍 *title介绍 *公共参数集合--par *par的权限机制 总结 本文首发 https://program-dog.blogspot.com 注1:本文也曾在csdn发布,不过无法忍受csdn超长时间的审核,迁移到博客圆了. 注2 : 本文含有大量原创图,但本文首发在google的blogspot上,国内图片可能不可见,有时间我会换图床的. 本作品采用知
第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表
第五篇:R语言数据可视化之散点图
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) + # 散点图函数 geom_point()
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
第三篇:R语言数据可视化之条形图
条形图简介 数据可视化中,最常用的图非条形图莫属,它主要用来展示不同分类(横轴)下某个数值型变量(纵轴)的取值.其中有两点要重点注意: 1. 条形图横轴上的数据是离散而非连续的.比如想展示两商品的价格随时间变化的走势,则不能用条形图,因为时间变量是连续的: 2. 有时条形图的值表示数值本身,但也有时是表示数据集中的频数,不要引起混淆: 绘制基本条形图 本例选用测试数据集如下: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_bar(stat
NLP︱词向量经验总结(功能作用、高维可视化、R语言实现、大规模语料、延伸拓展)
R语言由于效率问题,实现自然语言处理的分析会受到一定的影响,如何提高效率以及提升词向量的精度是在当前软件环境下,比较需要解决的问题. 笔者认为还存在的问题有: 1.如何在R语言环境下,大规模语料提高运行效率? 2.如何提高词向量的精度,或者说如何衡量词向量优劣程度? 3.词向量的功能性作用还有哪些值得开发? 4.关于语义中的歧义问题如何消除? 5.词向量从"词"往"短语"的跨越? 转载请注明出处以及作者(Matt),欢迎喜欢自然语言处理一起讨论~ ---------
R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模型有这么几个未解决的问题: 1.LDA主题数量,多少个才是最优的. 2.作出主题之后,主题-主题,主题与词语之间关联如何衡量. 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起.笔者发现R里面目前有两个包可以做LDA模型,是lda包+topicmodels包,两个包在使用的过程中,需要整理的数
热门专题
手机抽取boot.img
uni-app自定义键盘获取焦点后一直出现
java 反射校验空值
c# MVC FileResult 手机浏览器 下载失败
服务器 pagefile.sys 文件把C盘占满的解决办法
http 和 webservice
echarts自定义图例legend文字和样式
ansible 免密配置
aarch64交叉编译opencv
mysql关联查询的时间多,还是更新数据的时间多
weblogic集群部署 session
pipeline with learning curve原理
matlab 将图片名字保存为0001 0002
eclipsexml不跳转java
韩顺平java核心编程2019年版百度网盘
得到radio所选的值
idea新打开的项目database需要多次配置
signal如何添加好友
ajax每次请求sessionid都不同
centos系统添加user账号