首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言LDA主题词概率
2024-09-05
R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模型有这么几个未解决的问题: 1.LDA主题数量,多少个才是最优的. 2.作出主题之后,主题-主题,主题与词语之间关联如何衡量. 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起.笔者发现R里面目前有两个包可以做LDA模型,是lda包+topicmodels包,两个包在使用的过程中,需要整理的数
R语言︱LDA主题模型——最优主题...
R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments
[转]概率基础和R语言
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域.让我们一起
R语言与概率统计(二) 假设检验
> ####################5.2 > X<-c(159, 280, 101, 212, 224, 379, 179, 264, + 222, 362, 168, 250, 149, 260, 485, 170) > t.test(X,alternative='greater',mu=225,conf.level = 0.95)#单边检验 One Sample t-test data: X t = 0.66852, df = 15, p-value = 0.257
R语言结合概率统计的体系分析---数字特征
现在有一个人,如何对这个人怎么识别这个人?那么就对其存在的特征进行提取,比如,提取其身高,其相貌,其年龄,分析这些特征,从而确定了,这个人就是这个人,我们绝不会认错. 同理,对数据进行分析,也是提取出数据的特征,对其特征进行分析,从而确定这些数据所呈现的信息状况,从而确定了这些数据的独特性和唯一性,因为他呈现的信息是唯一的,绝不与别的是相同的. 那么这些特征是什么呢?拥有哪些特征呢?似乎应该是经过无数科学家的总结,终于发现了几个重要的特征,包括数字特征和分布特征,这个数字特征,包括集中位置,分散
R语言与概率统计(一) 描述性统计分析
#查看已安装的包,查看已载入的包,查看包的介绍 ########例题3.1 #向量的输入方法 w<-c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5, 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0) plot(w)#概况,数据的可视化可以让我们看的更轻松 summary(w) #求均值 w.mean<-mean(w); w.mean w[2]#选取特定位置的数字 #控制异常值,trim表示去掉异常值的比例
数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵
数据分析R语言1
数据分析R语言 无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.com/course/34,非常不错的网站,站长的Q群是323370861(这个群的童鞋们都很给力,学习也很上进,各种团购买hadoop,nosql,spark的视频学习),我网站会员ID是515,也欢迎各方朋友交流,OK,开始 统计的一些基础概念,如下图所示, 数据分析常
数据分析,R语言
数据结构 创建向量和矩阵 1 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 1 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 1 函数help() 生成向量 1 seq() 生成字母序列letters 新建向量 1 Which()函数,rev()函数,sort()函数 生成矩阵 1 函数matrix() 矩阵运算 1 函数t(),矩阵加减 矩阵运算 1
R语言中的线性判别分析_r语言 线性判别分析
R语言中的线性判别分析_r语言 线性判别分析 在R语言中,线性判别分析(Liner Discriminant Analysis,简称LDA),依靠软件包MASS中有线性判别函数lqa()来实现.该函数有三种调用格式: 1)当对象为数据框data.frame时 lda(x,grouping,prior = propotions,tol = 1.0e-4,method,CV = FALSE,nu,-) 2) 当对象为公式Formula时 lda(formula,data,-,subnet,na.ac
R语言——七月
这两个月没有写什么代码.也没做什么大项目,基本就是对以前写的那个用ggplot2可视化数据的项目做一些增增补补,大部分技术难关都在ggplot2和R语言EXCEL处理这里解决并总结了.然后业余帮人修改一个用RVEST写的亚马逊简陋爬虫,花了两个周末时间. 就简单记一下最近弄的这个功能块 功能块分区,并自定义 这个是在处理数据的时候,需要对一批有序数字按照累积的概率进行分组,然后划分分组. 主要用到了两个函数:cumsum(求累积分布),cut(划分区间) 如下面的示例函数getInterval,
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是
R 语言机器学习同步推进~
教材就是传说中的机器学习和R语言--中文版,大家可以去图书馆借来看看~~~,例子都是来自书上的 首先介绍一下KNN算法,KNN还好吧,说白了就是一个算距离的公式然后以统计的方式呈现出来,以二维平面为例,平面内已知n个区域,每个区域里面有m(n)个点,现在求一个不在n区域内的点与哪一个区域最近,额,为了"恰当",考虑较远的点的影响会覆盖较近点的影响和没有意义的重复计算,只取k(k<n)个较近点参与计算,这就是这个方法的原理了,简单粗暴~~问题还有就是在数据很大的时候怎么选取K值,书
R语言学习笔记(二)
今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言来描述. > vars<-c("mpg","hp","wt") > head(mtcars[vars]) mpg hp wt Mazda RX4 21.0 110 2.620 Mazda RX4 Wag 21.0 110 2.875 Datsun 710 22.8 93 2.320 Hornet 4 Drive 21.4 110 3.215 Hornet Sportab
R语言 常见模型
转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到的问题不是我应该采用哪个算法来处理我的数
survival analysis 生存分析与R 语言示例 入门篇
原创博客,未经允许,不得转载. 生存分析,survival analysis,顾名思义是用来研究个体的存活概率与时间的关系.例如研究病人感染了病毒后,多长时间会死亡:工作的机器多长时间会发生崩溃等. 这里“个体的存活”可以推广抽象成某些关注的事件. 所以SA就成了研究某一事件与它的发生时间的联系的方法.这个方法广泛的用在医学.生物学等学科上,近年来也越来越多人用在互联网数据挖掘中,例如用survival analysis去预测信息在社交网络的传播程度,或者去预测用户流失的概率. R里面有很成熟
机器学习与R语言
此书网上有英文电子版:Machine Learning with R - Second Edition [eBook].pdf(附带源码) 评价本书:入门级的好书,介绍了多种机器学习方法,全部用R相关的包实现,案例十分详实,理论与实例结合. 目录 第一章 机器学习简介 第二章 数据的管理和理解 第三章 懒惰学习--使用近邻分类 第四章 概率学习--朴素贝叶斯分类 第五章 分而治之--应用决策树和规则进行分类 第六章 预测数值型数据--回归方法 第七章 黑箱方法--神经网络和支持向量机 第八章 探
线性函数拟合R语言示例
线性函数拟合(y=a+bx) 1. R运行实例 R语言运行代码如下:绿色为要提供的数据,黄色标识信息为需要保存的. x<-c(0.10,0.11, 0.12, 0.13, 0.14, 0.15,0.16, 0.17, 0.18, 0.20, 0.21, 0.23) y<-c(42.0,43.5, 45.0, 45.5, 45.0, 47.5,49.0, 53.0, 50.0, 55.0, 55.0, 60.0) data1=data.frame(x=x,y=y) #数据存入数据框
皮尔逊相似度计算的例子(R语言)
编译最近的协同过滤算法皮尔逊相似度计算.下顺便研究R简单使用的语言.概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 由于这里每一个数都是等概率的.所以就当做是数组或向量中全部元素的平均数吧.能够使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance整体方差和sample variance样本方差,差别是整体方差除以N,样本方差除以N-1. 数理统计中经常使用样本方差,R语言的var()函数计算的也是样本
热门专题
oracle中timestamp转化为date
locomotion虚拟现实
Long类型集合前端精度丢失解决办
linux系统清理垃圾
idea 主题下载网站
keil引号里代码红色怎么改
python 将list写入txt文件
unity 制作角色转向动画
openwrt docker web界面
QICON绝对路径崩溃
ffmpeg 推送流
linux远程登录pg数据库查看表
滚动到底部某个位置变成绝对定位
中兴b760v3破解
unity 判断物体在相机内
execl basic 设置单元格的显示格式
在cmd中如何使用mysql在新建的数据表中新增数据
pychram中run configuration快捷键
mysql编码格式命令
debian9的电脑配置