首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言plot横坐标xaxp yaxp
2024-08-28
R par yaxp xaxp 显示x轴和y轴的刻度线
R语言会自动根据数据的范围,在X轴和Y轴上标记合适的刻度 > options(scipen = ) > plot(sample(:, )) 生成的图片如下 通过par("yaxp")和par("xaxp")这两个可读属性,可以显示出X轴和Y轴刻度的范围 > par("yaxp") [] > par("xaxp") [] 返回值是长度为3的向量,前两个数字对应起始和终止刻度的数字,第三个数字代表区间个数.
R语言plot函数参数合集
最近用R语言画图,plot 函数是用的最多的函数,而他的参数非常繁多,由此总结一下,以供后续方便查阅. plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL, log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL, ann = par("ann"), axes = TRUE, frame.plot = axes, panel.
R语言 plot()函数
语法: plot(x, y, ...) x,y分别是两个向量,x为横轴坐标,y为纵轴坐标 其他参数: type= "p" for points, 散点图 默认 "l" for lines, 线图 "b" for both, 描点连线,点与线不相连 "c" for the lines part alone of "b", 线图,点空白 "o" for both ‘overplo
R语言 plot()函数 基础用法
plot(x=x轴数据,y=y轴数据,main="标题",sub="子标题",type="线型",xlab="x轴名称",ylab="y轴名称",xlim = c(x轴范围,x轴范围),ylim = c(y轴范围,y轴范围))
R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接 https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram
R语言基本绘图-plot参数:标题,坐标轴和颜色
标题 plot(c(1:2,2:4),main = "这是主标题",sub = "这是副标题",xlab = "这是x轴", ylab = "这是y轴") 坐标轴筛选 plot(c(1:20,10:30,15:40)) plot(c(1:20,10:30,15:40),xlim = c(10,80),ylim = c(20,40)) 颜色 单一颜色 命令行输入colors(),可以查看所有可用的颜色(当前有657种颜色可供使用
[2]R语言在数据处理上的禀赋之——可视化技术
本文目录 Java的可视化技术 R的可视化技术 二维做图利器plot的参数配置 *权限机制 *plot独有的参数 *plot的type介绍 *title介绍 *公共参数集合--par *par的权限机制 总结 本文首发 https://program-dog.blogspot.com 注1:本文也曾在csdn发布,不过无法忍受csdn超长时间的审核,迁移到博客圆了. 注2 : 本文含有大量原创图,但本文首发在google的blogspot上,国内图片可能不可见,有时间我会换图床的. 本作品采用知
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是
机器学习与R语言
此书网上有英文电子版:Machine Learning with R - Second Edition [eBook].pdf(附带源码) 评价本书:入门级的好书,介绍了多种机器学习方法,全部用R相关的包实现,案例十分详实,理论与实例结合. 目录 第一章 机器学习简介 第二章 数据的管理和理解 第三章 懒惰学习--使用近邻分类 第四章 概率学习--朴素贝叶斯分类 第五章 分而治之--应用决策树和规则进行分类 第六章 预测数值型数据--回归方法 第七章 黑箱方法--神经网络和支持向量机 第八章 探
数据分析R语言1
数据分析R语言 无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.com/course/34,非常不错的网站,站长的Q群是323370861(这个群的童鞋们都很给力,学习也很上进,各种团购买hadoop,nosql,spark的视频学习),我网站会员ID是515,也欢迎各方朋友交流,OK,开始 统计的一些基础概念,如下图所示, 数据分析常
R语言——基本绘图函数
通过一个综合的例子测试绘图函数 学习的内容是tigerfish老师的教程. 第一节:基本知识 用seq函数产生100位学生的学号. > num = seq(,) > num [] [] [] [] [] [] [] [] [] [] [] [] [] 用runif函数产生100个随机数(随机数是小数),代表课程1的成绩,100个数字,最小值50,最大值100. 该结果是均匀分布,用round函数对其取整. > x1 = round(runif(100,min=50,max=100));
R语言实战(四)回归
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个
R语言︱ROC曲线——分类器的性能表现评价
笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetive. -------------------------- 相关内容: 1. R语言︱ROC曲线--分类器的性能表现评价 2.机器学习中的过拟合问题 3.R语言︱机器学习模型评估方案(以随机森林算法为例) -------------------------- 1.TPR与TNR 同时可以相应算出TP
R语言 ggplot2包
R语言 ggplot2包的学习 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
[R]关于R语言的绘图函数
1. 首先就是plot(x,y,...) 参数: x: 所绘图形横坐标构成的对象 y: 所绘图形纵坐标构成的对象 type: 指定所绘图形类型 pch: 指定绘制点时使用的符号 cex: 指定符号的大小.cex是一个数值,表示绘图符号相对于默认大小的缩放倍数. 默认大小为1, 1.5表示放大为默认值的1.5倍, 0.5表示缩小为默认值的50%等. cex.axis: 坐标轴刻度文字的缩放倍数. 类似于cex cex.lab: 坐标轴标签(名称)的缩放倍数,类似于cex cex.main: 标题的
R语言计算moran‘I
R语言计算moran‘I install.packages("maptools")#画地图的包 install.packages("spdep")#空间统计,moran'I install.packages("tripack") install.packages("RANN") library("maptools") library("spdep") library("trip
[译]用R语言做挖掘数据《四》
回归 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器3. R:在命令行输入‘R’进入交互式环境,下面的代码都是在交互式环境运行. 3. 环境使用 使用R语言交互式环境输入实验
【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就
R语言笔记完整版
[R笔记]R语言函数总结 R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(
【数据分析 R语言实战】学习笔记 第十一章 对应分析
11.2对应分析 在很多情况下,我们所关心的不仅仅是行或列变量本身,而是行变量和列变量的相互关系,这就是因子分析等方法无法解释的了.1970年法国统计学家J.P.Benzenci提出对应分析,也称关联分析.R-Q型因子分析,其是一种多元相依变量统计分析技术.它通过分析由定性变量构成的交互汇总表,来揭示同一变量各类别之间的差异,以及不同变量各类别之间的对应关系,这是一种非常好的分析调查问卷的手段. 对应分析是一种视觉化的数据分析方法,其基木思想是将一个联列表的行和列中各元素的比例结构以点的形式在较
热门专题
jquery实现复制内容到剪切板 兼容移动端
layui 上传两个文件绑定在一个按钮上
matlab2014b未找到支持的编译器或SDK
snort 目录文件说明 规则书写
定时任务执行失败 未知的用户名
2个不同的仓库拾取合并代码
基于springboot生成dubbo2.7.8生产者
windows2008server r2 iscsi虚拟储存
墨刀制作手机app原型
cocos预制件修改更新
调试报错远程证书无效
微信小程序弹框wx.showToast title显示不全
oracle判断某列包含某个字符多次
java Httpclient去掉ssl
freeswitch5060外部链接不上
pass和class怎么配
intent data等于null
jqGrid 表格添加时间
sqlserver設置登入帳戶只能訪問指定資料庫
css设置背景图片,出线滚动条该怎么消除