首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言table是什么类型数据
2024-09-03
R语言六种数据类型
1 向量 1.1 定义向量 向量使用c来赋值,向量中不能混合不同类型的数据 x<-c(2,3,7,6,8) 数值型num y<-("one","two","three") 字符型chr z<-c(TRUE,TRUE,FALSE) 逻辑型logi 查看变量的类型:class(x) 1.2 访问向量 访问中的元素,使用中括号(R语言区分大小写),R语言索引从1开始 访问第二个元素:x[2] 访问第1和第3个元素:x[c(1,3
【R笔记】R语言进阶之4:数据整形(reshape)
R语言进阶之4:数据整形(reshape) 2013-05-31 10:15 xxx 网易博客 字号:T | T 从不同途径得到的数据的组织方式是多种多样的,很多数据都要经过整理才能进行有效的分析,数据整形不仅仅是为了改善数据的外观,也是进行一些统计分析和作图前必要的步骤.数据整形和数据凝练/汇总往往密不可分,这是门学问,是R语言数据处理的内容之一. AD:51CTO技术沙龙 | 赋予APP不同凡响的交互和体验>> 来源: http://developer.51cto.com/art/2013
R语言table()函数
R语言table()函数比较有用,两个示例尤其是混淆矩阵这个案例比较有用: 例子一:统计频次 z<-c(1,2,2,4,2,7,1,1);z1<-table(z);summary(z1); z1#实现z中各数据频次的统计z1 2 4 7 3 3 1 1 names(z1)#居然是有名字的[1] "1" "2" "4" "7"例子二:实现混淆矩阵 t=table(c(1,0,1,1,1,0,0,1),c(0,0,1,
写论文,没数据?R语言抓取网页大数据
写论文,没数据?R语言抓取网页大数据 纵观国内外,大数据的市场发展迅猛,政府的扶持也达到了空前的力度,甚至将大数据纳入发展战略.如此形势为社会各界提供了很多机遇和挑战,而我们作为卫生(医学)统计领域的一份子,更要把握好机会.放眼全球,大数据的应用规模仍在持续扩张,几乎每个行业都将目光瞄准了大数据背后的巨大价值.未来五到十年,是我国推进大数据发展的关键时期,打造高效的大数据应用机制和产业链迫在眉睫. 空格根据当前大数据行业发展的分析,我们着手大数据不妨从"可视化数据抓取"开始考虑.这里提
R语言进阶之4:数据整形(reshape)
一.通过重新构建数据进行整形 数据整形最直接的思路就把数据全部向量化,然后按要求用向量构建其他类型的数据.这样是不是会产生大量的中间变量.占用大量内存?没错.R语言的任何函数(包括赋值)操作都会有同样的问题,因为R函数的参数传递方式是传值不传址,变量不可能原地址修改后再放回原地址. 矩阵和多维数组的向量化有直接的类型转换函数: as.vector,向量化后的结果顺序是先列后行再其他: > (x <- matrix(1:4, ncol=2)) #为节省空间,下面的结果省略了一些空行 [,1]
大数据基础--R语言(刘鹏《大数据》课后习题答案)
1.R语言是解释性语言还是编译性语言? 解释性语言 2.简述R语言的基本功能. R语言是一套完整的数据处理.计算和制图软件系统,主要包括以下功能: (1)数据存储和处理功能,丰富的数据读取与存储能力,丰富的数据处理功能. (2)数组运算工具 (3)完整连贯的统计分析工具 (4)优秀的统计制图功能 3.R语言通常用在哪些领域? 人工智能.统计分析.应用数学.计量经济.金融分析.财经分析.生物信息学.数据可视化与数据挖掘等. 4.R语言常用的分类和预测算法有哪些? (1)K-近邻算法
如何使用R语言解决可恶的脏数据
转自:http://shujuren.org/article/45.html 在数据分析过程中最头疼的应该是如何应付脏数据,脏数据的存在将会对后期的建模.挖掘等工作造成严重的错误,所以必须谨慎的处理那些脏数据. 脏数据的存在形式主要有如下几种情况: 1)缺失值 2)异常值 3)数据的不一致性 下面就跟大家侃侃如何处理这些脏数据. 一.缺失值 缺失值,顾名思义就是一种数据的遗漏,根据CRM中常见的缺失值做一个汇总: 1)会员信息缺失,如身份证号.手机号.性别.年龄等 2)消费数据缺失,如消费次数.
R语言-来自Prosper的贷款数据探索
案例分析:Prosper是美国的一家P2P在线借贷平台,网站撮合了一些有闲钱的人和一些急用钱的人.用户若有贷款需求,可在网站上列出期望数额和可承受的最大利率.潜在贷方则为数额和利率展开竞价. 本项目拟通过该数据集的探索,结合自己的理解进行分析,最终目的的是初步预测哪些人贷款后会还款.哪些人会赖账. 1.探索数据集 loandata = read.csv("prosperLoanData.csv") str(loandata) 结论:一共有81个变量,113937个对象 2.选择分析的变
吴裕雄--天生自然 R语言开发学习:导入数据
2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get()是对read.spss()的一个封装,它可以为你自动设 置后者的许多参数,让整个转换过程更加简单一致,最后得到数据分析人员所期望的结果. 首先,下载并安装Hmisc包(foreign包已被默认安装): install.packages("Hmisc") 然后使用以下代码导入数据: libr
R语言-来自拍拍贷的数据探索
案例分析:拍拍贷是中国的一家在线借贷平台,网站撮合了一些有闲钱的人和一些急用钱的人.用户若有贷款需求,可在网站上选择借款金额. 本项目拟通过该数据集的探索,结合自己的理解进行分析,最终目的的是初步预测贷款的利率和哪些因素有关. 0.加载包 library(ggplot2) library(gridExtra) library(utf8) library(dplyr) library(tidyr) library(GGally) library(RColorBrewer) library(care
R语言操作mysql上亿数据量(ff包ffbase包和ETLUtils包)
平时都是几百万的数据量,这段时间公司中了个大标,有上亿的数据量. 现在情况是数据已经在数据库里面了,需要用R分析,但是完全加载不进来内存. 面对现在这种情况,R提供了ff, ffbase , ETLUtils 的解决方案. 它可以很简单的加载,转换数据库的数据进入R内存,ETLUtils 包现在已经扩展了read.odbc.ffdf 方法用来查询Oracle, MySQL, PostgreSQL & sqlite databases.. 下面我们就来展示一个例子. require(ETLUti
R语言学习笔记:取数据子集
上文介绍了,如何生成序列,本文介绍一下如何取出其数据子集 取出元素的逻辑值 > x<-c(0,-3,4,-1,45,90,5) > x>0 [1] FALSE FALSE TRUE FALSE TRUE TRUE TRUE 取出符合条件的值的值 > x[x>0] [1] 4 45 90 5 > x[x>5 | x<(-2)] [1] -3 45 90 > x[x>1 & x<20] [1] 4 5 用负号‘-’排除
R语言爬虫:使用R语言爬取豆瓣电影数据
豆瓣排名前25电影及评价爬取 url <-'http://movie.douban.com/top250?format=text' # 获取网页原代码,以行的形式存放在web 变量中 web <- readLines(url,encoding="UTF-8") # 找到包含电影名称的行 name <- str_extract_all(string = web, pattern = '<span class="title">.+</
R语言 table()函数
table函数 用 table() 函数统计因子各水平的出现次数(称为频数或频率).也可以对一般的向量统计每个不同元素的出现次数.如 sex = c("女","女","女","男","男")table(sex) sex 男 女 2 3 对一个变量用 table 函数计数的结果是一个特殊的有元素名的向量,元素名是自变量的不同取值,结果的元素值是对应的频数.单个因子或单个向量的频数结果可以用向量的下标访问方法取
R语言中文社区历史文章整理(类型篇)
R语言中文社区历史文章整理(类型篇) R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形
R语言︱词典型情感分析文本操作技巧汇总(打标签、词典与数据匹配等)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:情感分析中对文本处理的数据的小技巧要求比较高,笔者在学习时候会为一些小技巧感到头疼不已. 主要包括以下内容: 1.批量读取txt字符文件(导入.文本内容逐行读取.加入文档名字). 2.文本清洗(一级清洗,去标点:二级清洗去内容:三级清洗,去停用词) 3.词典之间匹配(有主键join.词库匹配%in%) 4.分词之后档案id+label
R语言学习笔记:读取前n行数据
常规读取 一般我们读取文件时都会读取全部的文件然后再进行操作,因为R是基于内存进行计算的. data <- read.table("C:\\Users\\Hider\\Desktop\\test.txt", header = TRUE, encoding = "gbk") 但是当读取的数据量很大的时候,读取的时间会让人捉急,而且会把内存给占满,读完数据之后就不用进行下一步操作了,因为电脑都卡死了. 所以只读取数据的前n行是一个不错的选择,边读取边进行处理. 读
第二篇:R语言数据可视化之数据塑形技术
前言 绘制统计图形时,半数以上的时间会花在调用绘图命令之前的数据塑型操作上.因为在把数据送进绘图函数前,还得将数据框转换为适当格式才行. 本文将给出使用R语言进行数据塑型的一些基本的技巧,更多技术细节推荐参考<R语言核心手册>. 数据框塑型 1. 创建数据框 - data.frame() # 创建向量p p = c("A", "B", "C") # 创建向量q q = 1:3 # 创建数据框:含p/q两列 dat = data.fra
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
r语言与dataframe
什么是DataFrame 引用 r-tutor上的定义: DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量. 没错,DataFrame就是类似于Excel表格和MySQL数据库一样是一个结构化的数据体.而这种结构化的数据体是当代数据流编程中的中流砥柱,几乎所有先进算法的载体都是DataFrame,比如现在我们耳熟能详的逻辑回归算法.贝叶斯算法.支持向量机算法.XGBoost算法等等都建立在这个数据流编程的基础之上,我们可以在R.Python.Scala
【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就
热门专题
vscode设置tab为4个空格
getinitparameter方法
visual studio 2019 离线安装插件
取 listmap 某一列 所有值
九宫格抽奖 javascript
element tree 一级菜单id 和二级菜单id
ubuntu 20.04 网络配置
CG PROGRAM语法
c# Path.Combine 的用法
WebBrowser 获取单选按钮
curl -xpost模拟请求
express 全局异常
python try except嵌套怎么执行的
nw.js 打包第一次执行速度慢
本地yum源[Errno 14] curl#18
Hilbert矩阵是正定矩阵
OS X EI Capitan 系统如何换成MacOS
jspring_security_check 自定义认证
eclipse窗口介绍
MFC 改变所有控件背景颜色