首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R 临床信息 瀑布图
2024-09-03
ggalluvial|TCGA临床数据绘制桑基图(Sankey)
本文首发于”生信补给站“,https://mp.weixin.qq.com/s/yhMgkST-rVD6SaQS7R-eoA 桑基图(Sankey diagram),是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源.材料成分.金融等数据的可视化分析. 因1898年Matthew Henry Phineas Riall Sankey绘制的“蒸汽机的能源效率图”而闻名,此后便以其名字命名为“桑基图”. 一 载入R包,数据 本文使用TCGA数据集中的LIHC的临床数据进行
maftools | 从头开始绘制发表级oncoplot(瀑布图)
本文首发于微信公众号 **“ 生信补给站 ”** ,期待您的关注!!! 原文链接:https://mp.weixin.qq.com/s/G-0PtaoO6bYuhx_D_Rlrlw 对于组学数据的分析和展示来说,maftools算是一个宝藏“R包”,可用于MAF格式的组学数据的汇总,分析和可视化展示. 随着癌症基因组学的进步, 突变注释格式+Specification) (MAF) 被广泛用于存储检测到的somatic variants.The Cancer Genome Atlas 项目对
Excel催化剂图表系列之品味IBCS瀑布图观察企业利润构成
IBCS图表,每个细节都值得反复琢磨参悟,此篇给大家送上详尽的瀑布图方式下的利润数据观察.请不要拿Excel2016版提供的瀑布图与IBCS版的瀑布图作对比,那完全不是一个级别的,可以类比为拿一辆经济型小车和一辆特拉斯来对比,没有可比性. Excel原生的设计图表从来都只有被吐槽的份 千呼万唤出来的Excel新图表,真的好用么?真的够用么?从来对图表有点追求的人都很不屑于用Excel原生图表出来的效果,颜色丑,看多两眼就显呆板,就连新出的一堆瀑布图.树状图.漏斗图等也不出例外. 当一般普通用户用
Tableau绘制漏斗图、甘特图、瀑布图、镶边面积图、阴影坡度图
Tableau绘制漏斗图.甘特图.瀑布图.镶边面积图.阴影坡度图 本文首发于博客冰山一树Sankey,去博客浏览效果更好.直接右上角搜索该标题即可 一. 漏斗图 数据源 1.1 分色直条漏斗图 (1)导入数据 (2)将[数量]拖到行这一栏,将[阶段]拖到标记下的颜色选项卡吗,之后对数量进行降序排列. (3)把[数量]拖到标记下的大小选项卡,视图设置为整个视图 (4)把[阶段],[数量]拖到标签选项卡,并对数量进行快速表计算--合计百分比. (5)下面的图形由于太少而导致无法显示标签,对此可手动的
教你用Python创建瀑布图
介绍 对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具.不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图. 在往下进行之前,我想先告诉大家我指代的是哪种类型的图表.我将建立一个维基百科文章中描述的2D瀑布图. 这种图表的一个典型的用处是显示开始值和结束值之间起“桥梁”作用的+和-的值.因为这个原因,财务人员有时会将其称为一个桥梁.跟我之前所采用的其他例子相似,这种类型的绘图在Excel中不容易生成,当然肯定有生成它的方法,但是不容易记住. 关于瀑布图需要记
看懂 Fiddler 的瀑布图
最近准备给组内的新同学们分享下 Fiddler 这枚神器,可以讲的地方太多,我打算把一节课讲不完的内容写在博客上,大家可以随便看看.今天先介绍下 Fiddler 的瀑布图. 每个网络请求都会经历域名解析.建立连接.发送请求.接受数据等阶段.把多个请求以时间作为 X 轴,用图表的形式展现出来,就形成了瀑布图.在 Fiddler 中,只要在左侧选中一些请求,右侧选择"Timeline"标签,就可以看到这些请求的瀑布图,如下(点击查看大图): 看到这张图,你是否可以回答这些问题: 图标的 Y
R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接 https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram
R语言绘制QQ图
无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline(w)> w <- c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5,+ 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0)> qqnorm(w);qqline(w)
R语言画棒状图(bar chart)和误差棒(error bar)
假设我们现在有CC,CG,GG三种基因型及三种基因型对应的表型,我们现在想要画出不同的基因型对应表型的棒状图及误差棒.整个命令最重要的就是最后一句了,用arrows函数画误差棒.用到的R语言如下: data<-read.csv("E:/model/data.csv",sep=" ",header=T)#导入数据data mean_CC<-mean(data[,1])#计算CC基因型对应的表型的平均值 mean_GG<-mean(data[,2])
R语言-画线图
R语言分高水平作图函数和低水平作图函数 高水平作图函数:可以独立绘图,例如plot() 低水平作图函数:必须先运行高水平作图函数绘图,然后再加画在已有的图上面 第一种方法:plot()函数 > sales<-read.csv("dailysales.csv", header=TRUE) #读取文件和列名 > plot(sales$units~as.Date(sales$date,"%d/%m/%y"), #修改日期格式 + type="l
使用ggbio在R中制作弦图
分享一个制作弦图的R包:ggbio. 以下是一个简单的使用实例,效果图和代码如下. library(GenomicRanges) set.seed(1) N <- 100 gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges(start = sample(1:300, size = N, replace
R语言学习 - 线图绘制
线图是反映趋势变化的一种方式,其输入数据一般也是一个矩阵. 单线图 假设有这么一个矩阵,第一列为转录起始位点及其上下游5 kb的区域,第二列为H3K27ac修饰在这些区域的丰度,想绘制一张线图展示. profile="Pos;H3K27ac -5000;8.7 -4000;8.4 -3000;8.3 -2000;7.2 -1000;3.6 0;3.6 1000;7.1 2000;8.2 3000;8.4 4000;8.5 5000;8.5" 读入数据 profile_text <
R语言学习 - 热图美化
实际应用中,异常值的出现会毁掉一张热图.这通常不是我们想要的.为了更好的可视化效果,需要对数据做些预处理,主要有对数转换,Z-score转换,抹去异常值,非线性颜色等方式. 对数转换 为了方便描述,假设下面的数据是基因表达数据,4个基因 (a, b, c, d)和5个样品 (Grp_1, Grp_2, Grp_3, Grp_4),矩阵中的值代表基因表达FPKM值. data <- c(rnorm(5,mean=5), rnorm(5,mean=20), rnorm(5, mean=100), c
R语言学习 - 热图简化
绘制热图除了使用ggplot2,还可以有其它的包或函数,比如pheatmap::pheatmap (pheatmap包中的pheatmap函数).gplots::heatmap.2等. 相比于ggplot2作heatmap, pheatmap会更为简单一些,一个函数设置不同的参数,可以完成行列聚类.行列注释.Z-score计算.颜色自定义等. data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5 a;6.6;20.9;100.1;600.0;5.2 b;
R语言学习 - 热图绘制heatmap
生成测试数据 绘图首先需要数据.通过生成一堆的向量,转换为矩阵,得到想要的数据. data <- c(1:6, 6:1, 6:1, 1:6, (6:1)/10, (1:6)/10, (1:6)/10, (6:1)/10, 1:6, 6:1, 6:1, 1:6, 6:1, 1:6, 1:6, 6:1) [1] 1.0 2.0 3.0 4.0 5.0 6.0 6.0 5.0 4.0 3.0 2.0 1.0 6.0 5.0[15] 4.0 3.0 2.0 1.0 1.0 2.0 3.0 4.0 5.0
R语言之脸谱图
脸谱图和星图类似,但它却比星图可以表示更多的数据维度.用脸谱来分析多维度数据,即将P个维度的数据用人脸部位的形状或大小来表征.脸谱图在平面上能够形象的表示多维度数据并给人以直观的印象,可帮助使用者形象记忆分析结果,提高判断能力,加快分析速度.目前已应用于多地域经济战略指标数据分析,空间数据可视化等领域. 脸谱图一般采用15个指标,各指标代表的面部特征为: 1 脸的高度 2脸的宽度3 脸型4嘴巴厚度 5, 嘴巴宽度6 微笑7 眼睛的高度8 眼睛宽度 9 头发长度 10 头发宽度11头发风格12
R语言-简单线性回归图-方法
目标:利用R语言统计描绘50组实验对比结果 第一步:导入.csv文件 X <- read.table("D:abc11.csv",header = TRUE, sep = ",") 第二步:绘图 ggplot(X, aes(x = aaa, y = bbb)) + geom_point() + geom_smooth(method = "lm") + labs(x = "横坐标标题", y = "纵坐标标题&q
获取本地的jvm信息,进行图形化展示
package test1; import java.lang.management.CompilationMXBean; import java.lang.management.GarbageCollectorMXBean; import java.lang.management.ManagementFactory; import java.lang.management.MemoryMXBean; import java.lang.management.MemoryPoolMXBean; i
R语言绘制茎叶图
与直方图相比,茎叶图更能细致的看出数据分布情况! 代码: > x<-c(25, 45, 50, 54, 55, 61, 64, 68, 72, 75, 75,+ 78, 79, 81, 83, 84, 84, 84, 85, 86, 86, 86,+ 87, 89, 89, 89, 90, 91, 91, 92, 100)> stem(x) The decimal point is 1 digit(s) to the right of the | 2 | 5 3 | 4 | 5 5 |
R语言-箱型图&热力图
1.箱型图 boxplot()函数 > metals<-read.csv("metals.csv",header=TRUE) #读取文件和列名 > boxplot(metals, #数据集 + xlab="Metals", #设置X轴标题 + ylab="Atmospheric Concentration in ng per cubic metre", #设置Y轴标题 + main="Atmospheric Metal
R语言学习 - 线图一步法
首先把测试数据存储到文件中方便调用.数据矩阵存储在line_data.xls和line_data_melt.xls文件中 (直接拷贝到文件中也可以,这里这么操作只是为了随文章提供个测试文件,方便使用.如果你手上有自己的数据,也可以拿来用). profile = "Pos;H3K27ac;CTCF;Enhancer;H3K4me3;polII -5000;8.7;10.7;11.7;10;8.3 -4000;8.4;10.8;11.8;9.8;7.8 -3000;8.3;10.5;12.2;9.4
热门专题
sql2014 还原2008
idea 已经有JDK了但是代码还是全部爆红
python3 main函数写法
c#类似spring的ioc框架
winform 百度地图标注太多了很卡
wpf ComboBox 背景色 附加属性
加载图片 在图片上添加edti控件 MFC
ubuntu退出base
wtforms组件的作用
optind和argv
小程序有onuploadprogress
Matlab的predict函数
fctix 无法切换
js 格式化/Date(1643990400000)/
virtualbox共享文件夹没有权限
oracle归档日志查询所在文件夹
python随机数函数 4位数
通过re.sub替换字符串
多元线性回归结果ps代表什么
linux将用户添加到sudo组