首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R 确定假设检验样本量
2024-08-22
如何确定假设检验的样本量(sample size)?
在<如何计算假设检验的功效(power)和效应量(effect size)?>一文中,我们讲述了如何根据显著性水平α,效应量和样本容量n,计算功效,以及如何根据显著性水平α,功效和样本容量n,计算效应量.但这两个应用都属于事后检验,也就是说,就算假设检验之后计算出的功效或效应量不理想,我们也没有办法改变.因此,我们最好事先就把我们想要达到的功效和效应量确定好,然后根据显著性水平α,功效和效应量,计算样本容量n.这种事前检验的应用用得比较多. 此外,我们都知道,如果假设检验选取的样本量很小,那么
R数据分析:样本量计算的底层逻辑与实操,pwr包
样本量问题真的是好多人的老大难,是很多同学科研入门第一个拦路虎,今天给本科同学改大创标书又遇到这个问题,我想想不止是本科生对这个问题不会,很多同学从上研究生到最后脱离科研估计也没能把这个问题弄得很明白,那么希望大伙儿在看了这篇文章能够更加深入地理解样本量计算的逻辑,也能对大家的科研设计中的样本量设计部分有所启发. 样本量计算的逻辑 还记得我们最开始接触统计推断的时候,大家都知道一个词叫做原假设,原假设一般来讲都是"阴性的",我们统计推断要做的事情便是推翻原假设从而得出有"统计
调整的R方_如何选择回归模型
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 1.选择最简单模型 如果不能满足: 增加参数,增加R**2 判断是否overfittiing 调整R方,BIC,AIC(选择较小BIC或AIC值)
[原]CentOS7安装Rancher2.1并部署kubernetes (二)---部署kubernetes
################## Rancher v2.1.7 + Kubernetes 1.13.4 ################ ####################### 以下为声明 ##################### 此文档是在两台机上进行的实践,kubernetes处于不断开发阶段 不能保证每个步骤都能准确到同步开发进度,所以如果安装部署过程中有问题请尽量google 按照下面步骤能得到什么? 1.两台主机之一会作为Rancher的serve
利用python进行数据分析2_数据采集与操作
txt_filename = './files/python_baidu.txt' # 打开文件 file_obj = open(txt_filename, 'r', encoding='utf-8') # 读取整个文件内容 all_content = file_obj.read() # 关闭文件 file_obj.close() print(all_content) 结果: Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语
Django项目:CRM(客户关系管理系统)--81--71PerfectCRM实现CRM项目首页
{#portal.html#} {## ————————46PerfectCRM实现登陆后页面才能访问————————#} {#{% extends 'king_admin/table_index.html' %}#} {#{% block right-container-content %}#} {#<div class="container col-lg-offset-3">#} {# <h2><a class="form-signin-he
R语言各种假设检验实例整理(常用)
一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225 H1: μ > 225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N
【数据分析 R语言实战】学习笔记 第七章 假设检验及R实现
假设检验及R实现 7.1假设检验概述 对总体参数的具体数值所作的陈述,称为假设;再利用样本信息判断假设足否成立,这整个过程称为假设检验. 7.1.1理论依据 假设检验之所以可行,其理沦背景是小概率理论.小概率事件在一次试验中儿乎是不可能发生的,但是它一以发生,我们就有理由拒绝原假设:反之,小概率事件没有发生,则认为原假设是合理的.这个小概率的标准由研究者事先确定,即以所谓的显著性水平α(0<α<1)作为小概率的界限,α的取值与实际问题的性质相关,通常我们取α=0.1, 0.05或0.01,假设
R中统计假设检验总结(一)
先PS一个:考虑到这次的题目本身的特点 尝试下把说明性内容都直接作为备注写在语句中 另外用于说明的部分例子参考了我的教授Guy Yollin在Financial Data Analysis and Modeling with R这门课课件上的例子 部分参考了相关package的帮助文档中的例子 下面正题 - 戌 > # Assume the predetermined significance level is 0.05.假设预定的显着性水平是0.05. > # 1 Shapiro-Wil
R语言与概率统计(二) 假设检验
> ####################5.2 > X<-c(159, 280, 101, 212, 224, 379, 179, 264, + 222, 362, 168, 250, 149, 260, 485, 170) > t.test(X,alternative='greater',mu=225,conf.level = 0.95)#单边检验 One Sample t-test data: X t = 0.66852, df = 15, p-value = 0.257
【R】均值假设检验
p_value<-function(cdf,x,parament=numeric(0),side=0) { n<-length(parament) p<-switch(n+1, cdf(x), cdf(x,parament), cdf(x,parament[1],parament[2]), cdf(x,parament[1],parament[2],parament[3]) ) if(side<0) p else if (side>0) 1-p else if(p<0.
R语言基础
一.扩展包的基本操作语句R安装好之后,默认自带了"stats" "graphics" "grDevices" "utils" "datasets" "methods" "base"这七个包,这七个包是不允许被卸载和删除的.1.扩展包的安装install.packages("扩展包名称") 也可以在手动安装,所有的安装包都可以在网站https:/
《R语言实战》读书笔记-- 第六章 基本图形
首先写第二部分的前言. 第二部分用来介绍获取数据基本信息的图形技术和统计方法. 本章主要内容 条形图.箱型图.点图 饼图和扇形图 直方图和核密度图 分析数据第一步就是要观察它,用可视化的方式是最好的.本章的主题有两个 1.将变量的分布作可视化展示 2.通过结果变量进行跨组比较 下面从不同的图形开始探索数据. 6.1条形图 6.1.1简单地条形图 条形图是通过条形展示离散变量的频数分布.函数是barplot: barplot(height) height是主要参数,horiz = TRUE就是横向
R语言实战(五)方差分析与功效分析
本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析
学习笔记50—多重假设检验与Bonferroni校正、FDR校正
总结起来就三句话: (1)当同一个数据集有n次(n>=2)假设检验时,要做多重假设检验校正 (2)对于Bonferroni校正,是将p-value的cutoff除以n做校正,这样差异基因筛选的p-value cutoff就更小了,从而使得结果更加严谨 (3)FDR校正是对每个p-value做校正,转换为q-value.q=p*n/rank,其中rank是指p-value从小到大排序后的次序. 举一个具体的实例: 我们测量了M个基因在A,B,C,D,E一共5个时间点的表达量,求其中的差异基因,具体
在 R 中估计 GARCH 参数存在的问题
目录 在 R 中估计 GARCH 参数存在的问题 GARCH 模型基础 估计 GARCH 参数 fGarch 参数估计的行为 结论 译后记 在 R 中估计 GARCH 参数存在的问题 本文翻译自<Problems In Estimating GARCH Parameters in R > 原文链接:https://ntguardian.wordpress.com/2017/11/02/problems-estimating-garch-parameters-r/ 更新(11/2/17 3:00
R语言实战(六)重抽样与自助法
本文对应<R语言实战>第12章:重抽样与自助法 之前学习的基本统计分析.回归分析.方差分析,是假定观测数据抽样自正态分布或者其他性质较好的理论分布,进而进行的假设检验和总体参数的置信区间估计等方法.但在许多实际情况中统计假设并不一定满足,比如抽样于未知或混合分布.样本量过小.存在离群点.基于理论分布设计合适的统计检验过于复杂且数学上难以处理等情况,这时基于随机化和重抽样的统计方法就可派上用场. 本章探究两种应用广泛的依据随机化思想的统计方法:置换检验和自助法. ================
【R】多元线性回归
R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤. 1.选择预测变量 因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后
【数据分析 R语言实战】学习笔记 第六章 参数估计与R实现(下)
6.3两正态总体的区间估计 (1)两个总体的方差已知 在R中编写计算置信区间的函数twosample.ci()如下,输入参数为样本x, y,置信度α和两个样本的标准差. > twosample.ci=function(x,y,alpha,sigma1,sigma2){ + n1=length(x);n2=length(y) + xbar=mean(x)-mean(y) + z=qnorm(1-alpha/2)*sqrt(sigma1^2/n1+sigma2^2/n2) + c(xbar-z,xb
R in action读书笔记(17)第十二章 重抽样与自助法
12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相关性的置换检验. logregperm包提供了Logistic回归的置换检验.另外一个非常重要的包是glmperm,它涵盖了广义线性模型的置换检验依靠基础的抽样分布理论知识,置换检验提供了另外一个十分强大的可选检验思路.对于上面描述的每一种置换检验,我们完全可以在做统计假设检验时不理会正态分布.t分
热门专题
ftp当前安全设置不允许下载该文件
vue页面怎么实现顶部不动,通过点击选项卡中间内容改变
ie11不兼容箭头函数
spark怎么算相关系数
三层交换机用作DHCP实验报告
Sina Weibo数据集
react通过props传值
包装器类是引用传递吗
python带有括号运算的计算器程序
win10安装weblogic12c
微信小程序富文本编辑器
python如何让数组中大于0.5的为1小于为0
js 将gps经纬度转换成百度地图的经纬度
EVE-ng large版本与small版本
wpf GridLines虚线是否可以改成实线
编写一个函数,实现strcmp功能
es 8.0 创建mapping
liunx cp 遇到重复不用提示
jsp c标签实现else
c 删除字符串最后一个空格