1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其中, Q 是一个标准正交方阵, R 是上三角矩阵. 2. QR 分解的求解 QR 分解的实际计算有很多方法,例如 Givens 旋转.Householder 变换,以及 Gram-Schmidt 正交化等等.每一种方法都有其优点和不足.上一篇博客介绍了 Givens 旋转和 Householder
MATLAB中求矩阵非零元的坐标: 方法1: index=find(a); [i,j]=ind2sub(size(a),index); disp([i,j]) 方法2: [i,j]=find(a>0|a<0) %列出所有非零元的坐标 [i,j]=find(a==k) %找出等于k值的矩阵元素的坐标 所用函数简介: IND2SUB Multiple subscripts from linear index. IND2SUB is used to determine the equivalent
求矩阵的模: function count = juZhenDeMo(a,b) [r,c] = size(a);%求a的行列 [r1,c1] = size(b);%求b的行列 count = 0; for j=1:r-r1+1%所求的行数中取 for i=1:c-c1+1%所有的列数中取 d = a(j:j+r1-1,i:i+c1-1); e = double(d==b); if(sum(e(:))==r1*c1) count = count + 1; end end end<pre name=
29 [程序 29 求矩阵对角线之和] 题目:求一个 3*3 矩阵对角线元素之和 程序分析:利用双重 for 循环控制输入二维数组,再将 a[i][i]累加后输出. package cskaoyan; public class cskaoyan29 { @org.junit.Test public void diagonal() { java.util.Scanner in = new java.util.Scanner(System.in); int[][] arr = new int[3][