让子弹飞一会 UVM框架,将验证平台和激励分开,env以下属于平台部分,test和sequence属于激励,这样各司其职.我们可以将sequence_item 比喻成子弹,sequencer 类比成弹夹,UVM平台就是个枪.如图所示uvm_sequence 的类继承关系. The sequence item is written by extending the uvm_sequence_item, uvm_sequence_item inherits from the uvm_object v
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难
sequence to sequence模型是一类End-to-End的算法框架,也就是从序列到序列的转换模型框架,应用在机器翻译,自动应答等场景. Seq2Seq一般是通过Encoder-Decoder(编码-解码)框架实现,Encoder和Decoder部分可以是任意的文字,语音,图像,视频数据,模型可以采用CNN.RNN.LSTM.GRU.BLSTM等等.所以基于Encoder-Decoder,我们可以设计出各种各样的应用算法. 与Seq2Seq框架相对的还有一个CTC,CTC主要是利用序
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convolutions create representations for fixed size contexts, however, the effective context size of the network can easily be made larger by stacking severa
From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this paper, we propose a sequence learning that makes minimal assumptions on the sequence structure. use lstm to map the input sequence to a vector of a fix
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input sequence -> A vector of a fixed dimensionality -> Target sequence. A multilayered LSTM: The LSTM did not have difficulty on long sentences. Deep LSTMs
In this project we will be teaching a neural network to translate from French to English. 最后效果: [KEY: > input, = target, < output] > il est en train de peindre un tableau . = he is painting a picture . < he is painting a picture . > pourquo