首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
sift 定位 模板匹配
2024-11-07
OpenCV——SIFT特征检测与匹配
SIFT特征和SURF特征比较 比较项目 SIFT SURF 尺度空间极值检测 使用高斯滤波器,根据不同尺度的高斯差(DOG)图像寻找局部极值 使用方形滤波器,利用海森矩阵的行列式值检测极值,并利用积分图加速运算 关键点定位 通过邻近信息插补来定位 与SIFT类似 方向定位 通过计算关键点局部邻域的方向直方图,寻找直方图中最大值的方向作为关键点的主方向 通过计算特征点周围像素点x,y方向的哈尔小波变换,将x.y方向小波变换的和向量的最大值作为特征点方向 特征描述子 是关键点邻域高斯图像梯度方向直
halcon——缺陷检测常用方法总结(模板匹配(定位)+差分)
引言 机器视觉中缺陷检测分为一下几种: blob分析+特征 模板匹配(定位)+差分 光度立体:halcon--缺陷检测常用方法总结(光度立体) - 唯有自己强大 - 博客园 (cnblogs.com) 特征训练 测量拟合 频域+空间域结合:halcon--缺陷检测常用方法总结(频域空间域结合) - 唯有自己强大 - 博客园 (cnblogs.com) 深度学习 本篇主要总结一下缺陷检测中的定位+差分的方法.即用形状匹配,局部变形匹配去定位然后用差异模型去检测缺陷. 模板匹配(定位)+差分 整体思
使用OpenCV&&C++进行模板匹配.
一:课程介绍 1.1:学习目标 学会用imread载入图像,和imshow输出图像. 用nameWindow创建窗口,用createTrackbar加入滚动条和其回调函数的写法. 熟悉OpenCV函数matchTemplate并学会通过该函数实现模板匹配. 学会怎样将一副图片中自己感兴趣的区域标记出来 1.2:什么是模板匹配? 在一副图像中寻找和另一幅图像最相似(匹配)部分的技术. 1.3:案例展示 输入有两幅图像一副是 template.jpg 另一幅是 original.jpg .匹配完成的
opencv 在工业中的应用:模板匹配
模板匹配在工业中经常有两个用途,一模板匹配进行产品定位,二根据匹配度来判断是OK的产品还是NG的产品.我用OPENCV做了个模板匹配定位的DEMO. (1)点击打开图像按钮打开一幅图像 (2)点击定义模板就行拖动橡皮条进行模板设置 (3)模板定义好后就可以再打开其他图像进行模板匹配定位了 附图如下:
halcon 模板匹配(最简单)
模板匹配是机器视觉工业现场中较为常用的一种方法,常用于定位,就是通过算法,在新的图像中找到模板图像的位置.例如以下两个图像. 这种模板匹配是最基本的模板匹配.其特点只是存在平移旋转,不存在尺度变化,同时光照变化不大.这样很适合常规的灰度模板匹配.但是利用opencv不太好解决角度的问题,同时速度上也达不到工业需求,因此,halcon的用途就来了.下面我详细介绍模板匹配的过程: 1 首先是选择区域.也就是ROI.我们先建一个矩形区域,以矩形的中点作为参考点. //矩形区域 gen_rectan
OpenCV模板匹配函数matchTemplate详解
参考文档:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/template_matching/template_matching.html#id2 最近一直在做一个logo检测的项目,检测logo的有无,接触到模板匹配.模板匹配虽然精度不高,但选择恰当的方法,设置合适的阈值也能起到一定作用.有的时候我们还能用模板匹配来定位.下面对模板匹配进行一个总结. 模板匹配:模板匹配是一项在一幅图像
Halcon中模板匹配方法的总结归纳
基于组件的模板匹配: 应用场合:组件匹配是形状匹配的扩展,但不支持大小缩放匹配,一般用于多个对象(工件)定位的场合. 算法步骤: 1.获取组件模型里的初始控件 gen_initial_components() 参数: ModelImage [Input] 初始组件的图片 InitialComponents [Output] 初始组件的轮廓区域 ContrastLow [Input] 对比度下限 ContrastHigh [Input] 对比度上限 MinSize [Input] 初始组件的最小尺
OpenCV——模板匹配
minMaxLoc函数: void minMaxLoc( const Mat& src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, const Mat& mask=Mat() ); 说明: 1 minMaxLoc寻找矩阵(一维数组当作向量,用Mat定义) 中最小值和最大值的位置. 2 参数若不需要,则置为NULL或者0,即可. 3 minMaxLoc针对Mat和MatND的重载中 ,第5个参数是可
Atitit opencv模板匹配attilax总结
Atitit opencv模板匹配attilax总结 找一幅图像的匹配的模板,可以在一段视频里寻找出我们感兴趣的东西,比如条形码的识别就可能需要这样类似的一个工作提取出条形码区域(当然这样的方法并不鲁棒).而OpenCV已经为我们集成好了相关的功能.函数为matchTemplate. 所谓模板匹配就是在一幅图像中寻找和模板图像(patch)最相似的区域.该函数的功能为,在输入源图像Source image(I)中滑动框,寻找各个位置与模板图像Template image(T)的相似度,并将结果保
Halcon编程-基于形状特征的模板匹配
halcon软件最高效的一个方面在于模板匹配,号称可以快速进行柔性模板匹配,能够非常方便的用于缺陷检测.目标定位.下面以一个简单的例子说明基于形状特征的模板匹配. 为了在右图中,定位图中的三个带旋转箭头的圆圈.注意存在,位置.旋转和尺度变化. 上halcon程序 * This example program shows how to find scaled and rotated shape models. dev_update_pc ('off') dev_update_window
使用Opencv中matchTemplate模板匹配方法跟踪移动目标
模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: CV_TM_SQDIFF 平方差匹配法:计算图像像素间的距离之和,最好的匹配是0,值越大,是目标的概率就越低. CV_TM_CCORR 相关匹配法:一种乘法操作:数值从小到大,匹配概率越来越高. CV_TM_CCOEFF 相关系数匹配法:从-1到1,匹配概率越来越高. CV_T
OpenCV笔记(3)(Canny边缘检测、高斯金字塔、拉普拉斯金字塔、图像轮廓、模板匹配)
一.Canny边缘检测 Canny边缘检测是一系列方法综合的结果.其中主要包含以下步骤: 1.使用高斯滤波器,平滑图像,滤除噪声. 2.计算图像中每个像素点的梯度强度和方向. 3.应用非极大值抑制(NMS:Non-Maximum Suppression),以消除边缘检测带来的杂散相应. 4.应用双阈值(Double-Threshold)检测来确定真实和潜在的边缘. 5.通过抑制孤立的弱边缘最终完成边缘检测. 1.高斯滤波器 平滑图像. 2.计算梯度和方向 使用X和Y方向的Sobel算子来分别计算
halcon三种模板匹配方法
halcon有三种模板匹配方法:即Component-Based.Gray-Value-Based.Shaped_based,分别是基于组件(或成分.元素)的匹配,基于灰度值的匹配和基于形状的匹配,此外还有变形匹配和三维模型匹配也是分属于前面的大类 本文只对形状匹配做简要说明和补充: Shape_Based匹配方法: 上图介绍的是形状匹配做法的一般流程及模板制作的两种方法. 先要补充点知识:形状匹配常见的有四种情况 一般形状匹配模板shape_model.线性变形匹配模板planar_defor
opencv 模板匹配与滑动窗口(单匹配) (多匹配)
1单匹配: 测试图片: code: #include <opencv\cv.h> #include <opencv\highgui.h> #include <opencv\cxcore.h> #include <stdlib.h> #include <stdio.h> /* 模板匹配法 --图片查找 滑动窗口的原理 用等大小的模板窗口在范围中进行滑动 然后查找匹配 */ int main(int argc, char* argv[]){ Ip
opencv如何用模板匹配寻找目标
首先使用: MatchTemplate 比较模板和重叠的图像区域 void cvMatchTemplate( const CvArr* image, const CvArr* templ, CvArr* result, int method ); image 欲搜索的图像.它应该是单通道.8-比特或32-比特 浮点数图像 templ 搜索模板,不能大于输入图像,且与输入图像具有一样的数据类型 result 比较结果的映射图像.单通道.32-比特浮点数. 如果图像是 W×H 而 templ 是 w
[模式识别].(希腊)西奥多里蒂斯<第四版>笔记8它__模板匹配
在语音识别方面,同样的话都是同一个人,每次说的情况是不同的,难以识别.本章是定义如何适应不同的情况有不同的特性指标. 1,基于最优路径搜索的度量:①贝尔曼最优性原则和动态编程②编辑距离(The Edit Distance)③在语音识别动态时间扭曲(DTW), speaker-dependentrecognition. speaker-independentrecognition. 2,基于相关性的度量:这一部分解决的问题是"给定一组记录数据.查找数据是否包括已知模式.并找出其详细位置&quo
OpenCV探索之路(九):模板匹配
模板匹配的作用在图像识别领域作用可大了.那什么是模板匹配? 模板匹配,就是在一幅图像中寻找另一幅模板图像最匹配(也就是最相似)的部分的技术. 说的有点抽象,下面给个例子说明就很明白了. 在上面这幅全明星照中,我们想找出姚明头像的位置,并把它标记出来,可以做到吗? 可以,这就是模板匹配的要做的事情. 其实模板匹配实现的思想也是很简单很暴力的,就是拿着模板图片(姚明头像)在原图(全明星照)中从左上至右下依次滑动,直到遇到某个区域的相似度低于我们设定的阈值,那么我们就认为该区域与模板匹配了,也就是我们
OpenCV 学习笔记(模板匹配)
OpenCV 学习笔记(模板匹配) 模板匹配是在一幅图像中寻找一个特定目标的方法之一.这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否"相似",当相似度足够高时,就认为找到了我们的目标. 在 OpenCV 中,提供了相应的函数完成这个操作. matchTemplate 函数:在模板和输入图像之间寻找匹配,获得匹配结果图像 minMaxLoc 函数:在给定的矩阵中寻找最大和最小值,并给出它们的位置 在具体介绍这两个函数之前呢,我们还要介绍一个概念,就是如何来评价两
OpenCV-Python:模板匹配
啥叫模板匹配 模板匹配就是在大图中找小图,也就说在一幅图像中寻找另一幅模板图像的位置: OpenCV使用 cv2.matchTemplate() 实现模板匹配. import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('lena.jpg', 0) template = cv2.imread('face.jpg', 0) h, w = template.shape[:2] # rows-
关于opencv模板匹配功能的项目测试记录
模板匹配功能介绍的很好的一篇博客:https://www.cnblogs.com/XJT2018/p/9934139.html 就如上述博客所言:“若原图像中的匹配目标发生旋转或大小变化,该算法无效.” 具体在测试铭牌识别时,几次测试内,就发现精度非常不可靠.哪怕是从原图中截取一个子图,只要图像大小发生变化,最大匹配相似度也就0.3多,而该子图与其他图片的相似度就发现有超过0.4的. 总结:该功能,受限太多.
基于HALCON的模板匹配方法总结
注:很抱歉,忘记从转载链接了,作者莫怪.... 基于HALCON的模板匹配方法总结 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇<基于HDevelop的形状匹配算法参数的优化研究>文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来加快匹配过程,提高匹配的精度,这篇paper放到了中国论文在线了,需要可以去下载.
热门专题
ubuntu18.04 qt开机启动
eclipse运行jsp报错端口号被占用
er studio如何快速根据主键和外部键关联
js set里面放对象
导出指定项目 requirements.txt
ubuntu下使用arduino UNO r3
sqlserverlink创建
kettle centos 部署
sql出现次数最多的字段并排序
shiro报错找不到类
devicepixel radio 手机
sum=sum pow是什么算法
java dump文件分析intellij
linux 7z未找到命令
css html5 阻止苹果手机播放视频 自动最大化
wpf 多个控件 一个命名空间
zabbix安装部署 linux就该这么学
如何做一个扫码登录钉钉的转发机器
php替换所有a标签为标签内文字
设置多级列表显示都是第1条