首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
sift.detectAndCompute 彩色
2024-09-07
机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kpA, kpB, cv2.RANSAC, reproThresh) # 计算出单应性矩阵 参数说明:kpA表示图像A关键点的坐标, kpB图像B关键点的坐标, 使用随机抽样一致性算法来进行迭代,reproThresh表示每次抽取样本的个数 3.cv2.warpPespective(imageA, H,
第十二节、尺度不变特征(SIFT)
上一节中,我们介绍了Harris角点检测.角点在图像旋转的情况下也可以检测到,但是如果减小(或者增加)图像的大小,可能会丢失图像的某些部分,甚至导致检测到的角点发生改变.这样的损失现象需要一种与图像比例无关的角点检测方法来解决.尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)可以解决这个问题.我们使用一个变换来进行特征变换,并且该变换会对不同的图像尺度输出相同的结果. 到底什么是SIFT算法?通俗一点说,SIFT算法利用DoG(差分高斯)来提取关键
机器学习进阶-案例实战-图像全景拼接-书籍SIFT特征点连接 1.cv2.drawMatches(对两个图像的关键点进行连线操作)
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2) # 对两个图像关键点进行连线操作 参数说明:imageA和imageB表示图片,kpsA和kpsB表示关键点, matches表示进过cv2.BFMatcher获得的匹配的索引值,也有距离, flags表示有几个图像 书籍的SIFT特征点连接: 第一步:使用sift.detectAndComputer找出关键点和sift特征向量 第二步:构建BF
python opencv3 特征提取与描述 DoG SIFT hessian surf
git:https://github.com/linyi0604/Computer-Vision DoG和SIFT特征提取与描述 # coding:utf-8 import cv2 # 读取图片 img = cv2.imread("../data/walez1.jpg") # 转为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 创建一个sift对象 并计算灰度图像 sift = cv2.xfeatures2d.SIFT_creat
OpenCV-Python sift/surf特征匹配与显示
import cv2 import numpy as np def drawMatchesKnn_cv2(img1_gray,kp1,img2_gray,kp2,goodMatch): h1, w1 = img1_gray.shape[:2] h2, w2 = img2_gray.shape[:2] vis = np.zeros((max(h1, h2), w1 + w2, 3), np.uint8) vis[:h1, :w1] = img1_gray vis[:h2, w1:w1 + w2]
图像识别sift+bow+svm
本文概述 利用SIFT特征进行简单的花朵识别 SIFT算法的特点有: SIFT特征是图像的局部特征,其对旋转.尺度缩放.亮度变化保持不变性,对视角变化.仿射变换.噪声也保持一定程度的稳定性: SIFT算法提取的图像特征点数不是固定值,维度是统一的128维. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速.准确的匹配: 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量: 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求: 可扩展性,可以很方
sift、surf、orb 特征提取及最优特征点匹配
目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift sift特征简介 SIFT(Scale-Invariant Feature Transform)特征,即尺度不变特征变换,是一种计算机视觉的特征提取算法,用来侦测与描述图像中的局部性特征. 实质上,它是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向.SIFT所查找到的关键点是一些十分突出.
linux/ubuntu下最简单好用的python opencv安装教程 ( 解决 imshow, SIFT, SURF, CSRT使用问题)
希望这篇文章能彻底帮你解决python opencv安装和使用中的常见问题. 懒人请直奔这一节, 一条命令安装 opencv 使用python-opencv常用的问题 在linux中使用python版的opencv相信大家都会遇到各种问题, 常见的问题比如: imshow 无法使用, 会出现如下警告. 这是因为python-opencv没有编译gtk, 网上的解决方法可能会推荐你重新编译什么的, 太过麻烦, 也不一定能解决. cv2.error: OpenCV(4.1.0) /io/opencv
SIFT图像配准 python3.6 + opencv3.3代码
opencv3.x 中部分函数有改变: 1. SIFT:可以采用help(cv2.xfeatures2d)查询 2.drawKeypoints: 同样采用help()方法查询 opencv3 版本sift,surf 及其他不稳定的算法函数都放在opencv3.x的contrib版里.该模块下载地址 https://www.lfd.uci.edu/~gohlke/pythonlibs/ import cv2 import numpy as np def sift_kp(image): gray_i
python-应用OpenCV和Python进行SIFT算法的实现
如下图为进行测试的q和h,分别验证基于BFmatcher.FlannBasedMatcher等的SIFT算法 代码如下: import numpy as np import cv2 from matplotlib import pyplot as plt imgname1 = 'G:/q.jpg' imgname2 = 'G:/h.jpg' sift=cv2.xfeatures2d.SIFT_create() img1 = cv2.imread(imgname1) gray1 = cv2.cvt
python利用sift和surf进行图像配准
1.SIFT特征点和特征描述提取(注意opencv版本) 高斯金字塔:O组L层不同尺度的图像(每一组中各层尺寸相同,高斯函数的参数不同,不同组尺寸递减2倍) 特征点定位:极值点 特征点描述:根据不同bin下的方向给定一个主方向,对每个关键点,采用4*4*8共128维向量的描述子进项关键点表征,综合效果最佳: pip uninstall opencv-python pip install opencv-contrib-python==3.4.2.16 1.特征点检测 def sift_kp(ima
OpenCV-Python SIFT尺度不变特征变换 | 三十九
目标 在这一章当中, 我们将学习SIFT算法的概念 我们将学习找到SIFT关键点和描述算符. 理论 在前两章中,我们看到了一些像Harris这样的拐角检测器.它们是旋转不变的,这意味着即使图像旋转了,我们也可以找到相同的角.很明显,因为转角在旋转的图像中也仍然是转角.但是缩放呢?如果缩放图像,则拐角可能不是角.例如,检查下面的简单图像.在同一窗口中放大小窗口中小图像中的拐角时,该角是平坦的.因此,Harris拐角不是尺度不变的. 因此,在2004年,不列颠哥伦比亚大学的D.Lowe在他的论文<尺
[计算机视觉]100行python实现摄像机偏移、抖动告警
背景 在实际项目中,利用深度学习在检测道路车辆并分析车辆行为时,需要按照事先规定的方法绘制检测区(包含道路方向.车道区域等).由于各种原因(人为.天气),获取视频数据的摄像角度容易偏移原来设定的位置,造成检测区域和实际画面不匹配,系统容易产生误检误报等错误数据.因此需要在摄像机位置偏移第一时间告诉系统检测模块停止工作,直到摄像机归位后再进行检测.摄像机角度偏移告警属于‘视频诊断’中的一类,本文利用提取图片特征点实现摄像机偏移告警,demo全部python代码不足200行. 前面有几篇博客文字太少
[OpenCV-Python] OpenCV 中摄像机标定和 3D 重构 部分 VII
部分 VII摄像机标定和 3D 重构 OpenCV-Python 中文教程(搬运)目录 42 摄像机标定 目标 • 学习摄像机畸变以及摄像机的内部参数和外部参数 • 学习找到这些参数,对畸变图像进行修复 42.1 基础 今天的低价单孔摄像机(照相机)会给图像带来很多畸变.畸变主要有两种:径向畸变和切想畸变.如下图所示,用红色直线将棋盘的两个边标注出来,但是你会发现棋盘的边界并不和红线重合.所有我们认为应该是直线的也都凸出来了.你可以通过访问Distortion (optics)获得更多相关细节.
airTest 使用体验
airTest是国内网易自研的一套基于图像识别进行UI自动化测试的框架,目前已经可以支持andriod,ios,web端的UI测试,在google开发者大会上得到了google的高度认可. 最近在学习使用这个框架,首先来了解下他的原理 一. airTest框架的构成 airTest ---这里指的是airTest核心源代码 airTestIDE ---集成的开发环境,可以快速开发airTest脚本 (注意它自带了python 3.X版本,不能直接使用本地的python库) Poc
图像特征的提取(gaussian,gabor,frangi,hessian,Morphology...)及将图片保存为txt文件
# -*- coding: utf-8 -*- #2018-2-19 14:30:30#Author:Fourmi_gsj import cv2 import numpy as np import pylab as pl from PIL import Image import skimage.io as io from skimage import data_dir,data,filters,color,morphology import matplotlib.pyplot as plt fr
[OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (一)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图
[OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (二)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函数进行角点检测原理 我们前面学习了几个特征检测器,它们大多数效果都很好.但是从实时处理的角度来看,这些算法都不够快.一个最好例子就是 SLAM(同步定位与地图构建),移动机器人,它们的计算资源非常有限.为了解决这个问题,Edward_Rosten 和 Tom_Drummond 在 2006 年提出里
OpenCV 学习笔记 07 目标检测与识别
目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV 学习笔记 05 人脸检测和识别进行区分:需重新说明一下什么是目标检测. 目标检测是一个程序,它用来确定图像的某个区域是否有要识别的对象,对象识别是程序识别对象的能力.识别通常只处理已检测到对象的区域.若人们总是会在有人脸图像的区域去识别人脸. 在计算机视觉中有很多目标检测和识别的技术,本章会用到:
OpenCV 学习笔记 06 图像检索以及基于图像描述符的搜索
OpenCV 可以检测图像的主要特征,然后提取这些特征,使其成为图像描述符,这些图像特征可作为图像搜索的数据库:此外可以利用关键点将图像拼接 stitch 起来,组成一个更大的图像.如将各照片组成一个360度的全景照片. 本章节将介绍使用 OpenCV 来检测图像特例,并利用这些特征进行图像匹配和搜索.本章节选取一些图像,检测它们的主要特征,并通过单应性(homography)来检测这些图像是否存在于另一个图像中. 1 特征检测算法 特征检测和提取算法有很多,OpenCV 中常用的有如下几种:
热门专题
uint8是什么数据类型
python判断未知密码是否正确
QCameraExposure无法设定相机参数
beanutil支持builder
cl.exe已退出,代码为2
wine运行.net core 桌面程序
windows查看java路径
django的path函数参数
latex区域阴影点状
JACOB 调用com
ggplot ROC曲线参数
Veriolog 异步fifo 为什么 不能用 地址判断
jquery grid 不排序
bitmap 内存分配
nodejs https同步请求
dmidecode获取网卡信息
img标签无法遍历图片数组
火狐浏览器 右侧打开新标签
wpf ui框架 有哪些
推特账号如何绑定谷歌