首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
sklearn 保序回归
2024-11-10
scikit-learn一般实例之一:保序回归(Isotonic Regression)
对生成的数据进行保序回归的一个实例.保序回归能在训练数据上发现一个非递减逼近函数的同时最小化均方误差.这样的模型的好处是,它不用假设任何形式的目标函数,(如线性).为了比较,这里用一个线性回归作为参照. # coding:utf-8 print (__doc__) #作者:Nelle Varoquaux <nelle.varoquaux@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> #协议:BSD imp
机器学习:保序回归(IsotonicRegression):一种可以使资源利用率最大化的算法
1.数学定义 保序回归是回归算法的一种,基本思想是:给定一个有限的实数集合,训练一个模型来最小化下列方程: 并且满足下列约束条件: 2.算法过程说明 从该序列的首元素往后观察,一旦出现乱序现象停止该轮观察,从该乱序元素开始逐个吸收元素组成一个序列,直到该序列所有元素的平均值小于或等于下一个待吸收的元素. 举例: 原始序列:<9, 10, 14> 结果序列:<9, 10, 14> 分析:从9往后观察,到最后的元素14都未发现乱序情况,不用处理. 原始序列:<9, 14, 10&
103 保序回归 isotonic regression
103 保序回归 isotonic regression 2016-03-30 11:25:27 bea_tree 阅读数 6895 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/bea_tree/article/details/51009810 1.关于isotonic regression 首先sklearn粘上原贡献者的博客Isotonic Regression http:/
Spark机器学习(3):保序回归算法
保序回归即给定了一个无序的数字序列,通过修改其中元素的值,得到一个非递减的数字序列,要求是使得误差(预测值和实际值差的平方)最小.比如在动物身上实验某种药物,使用了不同的剂量,按理说剂量越大,有效的比例就应该越高,但是如果发现了剂量大反而有效率降低了,这个时候就只有把无序的两个元素合并了,重新计算有效率,直到计算出来的有效率不大于比下一个元素的有效率. MLlib使用的是PAVA(Pool Adjacent Violators Algorithm)算法,并且是分布式的PAVA算法.首先在每个分区
Spark Mllib里如何采用保序回归做回归分析(图文详解)
不多说,直接上干货! 相比于决策树,保序回归的应用范围没有决策树算法那么广泛. 特别在数据处理较为庞大的时候,采用保序回归做回归分析,可以极大地节省资源,从而提高计算效率. 保序回归的思想,是对数据进行均值排序,从数据集的第一个数开始,如果下一个数出现乱序,即与设定的顺序不符,则从乱序的数据开始逐个开始求得平均值,直到求得的平均值与下一个数据比较不成为乱序为止. 例如一个数据集: {,,2,,} 要求其按照保序回归由小到大进行排列. 首先观察第一个数是1,可以不做变动继续存放.第二个是2,仍然不
scikit-learn: isotonic regression(保序回归,非常有意思,仅做知识点了解,但差点儿没用到过)
http://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html#example-plot-isotonic-regression-py 代码就不贴了,參考上面链接. 看代码,给人的直观感受类似于CART,具有分段回归的效果. 只是非常少见人用这种方法,还是推荐使用CART吧,只是了解一下思想罢了. .. 给个简单的样例: 问题描写叙述:给定一个无序数字序列y,通过改动每一个元素的值得到一个非递减序列 y' ,问
【Spark机器学习速成宝典】模型篇08保序回归【Isotonic Regression】(Python版)
目录 保序回归原理 保序回归代码(Spark Python) 保序回归原理 待续... 返回目录 保序回归代码(Spark Python) 代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1 # -*-coding=utf-8 -*- from pyspark import SparkConf, SparkContext sc = SparkContext('local') import math from pyspark.mllib.regressio
MLlib--保序回归
转载请标明出处http://www.cnblogs.com/haozhengfei/p/24cb3f38b55e5d7516d8059f9f105eb6.html 保序回归 1.线性回归VS保序回归 • 线性回归->线性拟合 • 保序回归->保序的分段线性拟合,保序回归是拟合原始数据最佳的单调函数 1.1保序回归 保序回归是特殊的线性回归,如果业务上具有单调性,这时候就可以用保序回归,而不是用线性回归. 1.2保序回归应用场景 药剂和中毒的预测,剂量和毒性呈非递
掌握Spark机器学习库-07.14-保序回归算法实现房价预测
数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.regression.{IsotonicRegression, LinearRe
2015-4-2的阿里巴巴笔试题:乱序的序列保序输出(bit数组实现hash)
分布式系统中的RPC请求经常出现乱序的情况.写一个算法来将一个乱序的序列保序输出.例如,假设起始序号是1,对于(1, 2, 5, 8, 10, 4, 3, 6, 9, 7)这个序列,输出是:123, 4, 567, 8, 9, 10 上述例子中,3到来的时候会发现4,5已经在了.因此将已经满足顺序的整个序列(3, 4, 5)输出为一行. #include<stdio.h> int main() { int num ; while(scanf("%d",&num)!=
ellang 中进程异步通信中的信箱与保序
erlang 进程通讯中 执行到 receive 语句时 如果信箱没有消息可以匹配时会暂停等待消息. go() -> register(echo, spawn(test_pid,loop,[])), echo ! {self(), hello}, receive {_Pid,Msg} -> io:format("~w~n",[Msg]) end. %%Pid ! stop. loop() -> io:format(" loop start~n",
分布式系统中的RPC请求经常出现乱序的情况 写一个算法来将一个乱序的序列保序输出
分布式系统中的RPC请求经常出现乱序的情况. 写一个算法来将一个乱序的序列保序输出.例如,假设起始序号是1,对于(1, 2, 5, 8, 10, 4, 3, 6, 9, 7)这个序列,输出是: 1 2 3, 4, 5 6 7, 8, 9, 10 上述例子中,3到来的时候会发现4,5已经在了.因此将已经满足顺序的整个序列(3, 4, 5)输出为一行. 要求: 1. 写一个高效的算法完成上述功能,实现要尽可能的健壮.易于维护 2. 为该算法设计并实现单元测试 我的思路是: 假设输入
Sklearn实现逻辑回归
方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class=
有关map中使用iterate迭代器遍历的不保序问题和list remove(object)的细节问题
今天在做项目的过程中发现了如下两个问题: 一 使用map的iterator迭代器对map进行遍历得到的结果是不保序的,也就是每次输出结果都是不一样的.针对这个问题,看以下iterator迭代器的源码. 二list的remove(Object obj) 和 removeAll()方法在删除的时候需要注意的几个地方. 上面两个问题都是比较细小的一些细节问题,但是如果基础知识不牢靠的话,那你在项目中如果使用到但是不知道这些问题,你有可能会遇到灾难性的后果.大家注意以下把.举个简单的例子,按照你的正常的
sklearn调用逻辑回归算法
1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界线(或者边界实体),它具体的表现形式一定程度上说明了算法训练模型的过拟合程度,我们可以通过决策边界来调整算法的超参数. 注解:左边逻辑回归拟合决策边界嘈杂冗余说明过拟合,右边决策边界分层清晰说明拟合度好 3.在逻辑回归中随着算法的复杂度不断地提高,其算法的过拟合也会越来越严重,为了避免这个现象,我们
【导包】使用Sklearn构建Logistic回归分类器
官方英文文档地址:http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression 导包: from sklearn.linear_model import LogisticRegression 使用: classifier = LogisticRegression(solver='sag',max_i
Sklearn中的回归和分类算法
一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完的模型在本地保存成.m文件,方法如下: skilearn保存模型方法 keras也可以把模型保存成.h5文件,方法如下: keras保存模型方法 pybrain可以把模型保存成xml文件,方法如下: pybrain保存模型方法 2. 评价标准 mae(平均绝对误差) 平均绝对误差是绝对误差的平均值,
sklearn中的回归器性能评估方法(转)
explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一个参数“multioutput”,用来指定在多目标回归问题中,若干单个目标变量的损失或得分以什么样的方式被平均起来 它的默认值是“uniform_average”,他就是将所有预测目标值的损失以等权重的方式平均起来 如果你传入了一个shape为(n_oupputs,)的ndarray,那么数组内的数
sklearn中的回归器性能评估方法
explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一个参数“multioutput”,用来指定在多目标回归问题中,若干单个目标变量的损失或得分以什么样的方式被平均起来 它的默认值是“uniform_average”,他就是将所有预测目标值的损失以等权重的方式平均起来 如果你传入了一个shape为(n_oupputs,)的ndarray,那么数组内的数
(一)使用sklearn做各种回归
#申明,本文章参考于 https://blog.csdn.net/yeoman92/article/details/75051848 import numpy as np import matplotlib.pyplot as plt # 生成数据 def gen_data(x1, x2): y = np.sin(x1) * 1/2 + np.cos(x2) * 1/2 + 0.1 * x1 return y def load_data(): x1_train = np.linspace(0,
热门专题
python __main__.py 作用
php常用header头大全
nifi1.14启动不了
《C语言程序设计》K&R版 百度网盘
Appium Server就是Appium的服务端
winform 怎么判断窗体是否存在
java的api帮助文档下载
ARCgis中table join和spatial join
spring boot maven run有啥区别
Camtasia 9录屏系统声音生成MP4声音尖啸
uni.previewImage 左上角标题
统计单词数 noip
qtwidget 自适应布局
vscode python打包成exe
centos8 安装cacti 1.1.23
sql server profiler 新建数据库
kafka多级时间轮
windows开发python 如何迁移到linux
AT指令,查看网络ip
pl sql 外部导入数据覆盖原数据