首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
spark wordcount 架构原理
2024-11-08
4、wordcount程序原理剖析及Spark架构原理
一.wordcount程序原理深度剖析 二.Spark架构原理 1.
小记--------spark内核架构原理分析
首先会将jar包上传到机器(服务器上) 1.在这台机器上会产生一个Application(也就是自己的spark程序) 2.然后通过spark-submit(shell) 提交程序的时候 2.1会启动一个driver(进程):spark-submit使用我们之前一直使用的那种提交模式去提交的时候,我们之前的提交模式,叫做Standalone,其实会通过反射的方式,创建和构造一个DriverActor进程出来 driver进程会执行我们的Appl
[Spark内核] 第38课:BlockManager架构原理、运行流程图和源码解密
本课主题 BlockManager 运行實例 BlockManager 原理流程图 BlockManager 源码解析 引言 BlockManager 是管理整个Spark运行时的数据读写的,当然也包含数据存储本身,在这个基础之上进行读写操作,由于 Spark 本身是分布式的,所以 BlockManager 也是分布式的, BlockManager 原理流程图 [下图是 BlockManager 原理流程图] BlockManager 运行實例 从 Application 启动的角度来观察Blo
Spark基本架构及原理
Hadoop 和 Spark 的关系 Spark 运算比 Hadoop 的 MapReduce 框架快的原因是因为 Hadoop 在一次 MapReduce 运算之后,会将数据的运算结果从内存写入到磁盘中,第二次 Mapredue 运算时在从磁盘中读取数据,所以其瓶颈在2次运算间的多余 IO 消耗. Spark 则是将数据一直缓存在内存中,直到计算得到最后的结果,再将结果写入到磁盘,所以多次运算的情况下, Spark 是比较快的. 其优化了迭代式工作负载 Hadoop的局限 Spark的改进 抽
Spark集群基础概念 与 spark架构原理
一.Spark集群基础概念 将DAG划分为多个stage阶段,遵循以下原则: 1.将尽可能多的窄依赖关系的RDD划为同一个stage阶段. 2.当遇到shuffle操作,就意味着上一个stage阶段结束,下一个stage阶段开始 关于RDD中的分区,在默认情况下(也就是未指明分区数的情况) 1.如果从HDFS中读取数据创建RDD,在默认情况下 二.spark架构原理 1.Spark架构原理 Driver 进程 编写的Spark程序就在Driver上, 由Dr
63、Spark Streaming:架构原理深度剖析
一.架构原理深度剖析 StreamingContext初始化时,会创建一些内部的关键组件,DStreamGraph,ReceiverTracker,JobGenerator,JobScheduler,DStreamGraph, 我们程序中定义很多DStream,中间用很多操作把这些DStream给串起来,这些DStream之间的依赖关系,就是所谓的DStreamGraph, 然后调用StreamingContext.start()方法: 调用StreamingContext.start()方法的
小记---------spark架构原理&主要组件和进程
spark的主要组件和进程 driver (进程): 我们编写的spark程序就在driver上,由driver进程执行 master(进程): 主要负责资源的调度和分配,还有集群的监控 worker(进程): 主要负责 1.用自己的内存 存储RDD的某个或某些partition: 2.启动其它进程和线程,对RDD上的partition进行版型的处理和计算 executor(进程): 负责对RDD的p
大数据体系概览Spark、Spark核心原理、架构原理、Spark特点
大数据体系概览Spark.Spark核心原理.架构原理.Spark特点 大数据体系概览(Spark的地位) 什么是Spark? Spark整体架构 Spark的特点 Spark核心原理 Spark架构原理 spark内核架构 RDD及其特点 Spark SQL VS Hive Spark Streaming VS Storm spark 任务提交流程 小提示:这里,使用axure(原型制作工具),来画图十分方便,个人认为比viso或者是processon等流程图制作工具简单多了. 点击链接,看取
手写spark wordCount
val conf: SparkConf = new SparkConf().setMaster(Local[*]).setAppName("wordCount") val sc=new SparkContext(conf) sc.textFile("/input").flatMap(" ").map((_,1)).reduceByKey(_+_).saveAsTextFile("/output") sc.stop val co
Spark入门实战系列--4.Spark运行架构
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkContext
从源码剖析一个Spark WordCount Job执行的全过程
原文地址:http://mzorro.me/post/55c85d06e40daa9d022f3cbd WordCount可以说是分布式数据处理框架的”Hello World”,我们可以以它为例来剖析一个Spark Job的执行全过程. 我们要执行的代码为: sc.textFile("hdfs://...").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect 只有一行,很简单也很经典的代码.
【转载】Spark运行架构
1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境.在Spark中由S
Spark生态以及原理
spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍. 适用场景广泛 => 大数据分析统计,实时数据处理,图计算及机器学习 易用性 => 编写简单,支持80种以上的高级算子,支持多种语言,数据源丰富,可部署在多种集群中 容错性高.Spark引进了弹性分布式数据集RDD (Resil
Spark Scheduler内部原理剖析
文章正文 通过文章“Spark 核心概念RDD”我们知道,Spark的核心是根据RDD来实现的,Spark Scheduler则为Spark核心实现的重要一环,其作用就是任务调度.Spark的任务调度就是如何组织任务去处理RDD中每个分区的数据,根据RDD的依赖关系构建DAG,基于DAG划分Stage,将每个Stage中的任务发到指定节点运行.基于Spark的任务调度原理,我们可以合理规划资源利用,做到尽可能用最少的资源高效地完成任务计算. 1.分布式运行框架 Spark可以部署在多种资源管理平
简单理解Hadoop架构原理
一.前奏 Hadoop是目前大数据领域最主流的一套技术体系,包含了多种技术. 包括HDFS(分布式文件系统),YARN(分布式资源调度系统),MapReduce(分布式计算系统),等等. 有些朋友可能听说过Hadoop,但是却不太清楚他到底是个什么东西,这篇文章就用大白话给各位阐述一下. 假如你现在公司里的数据都是放在MySQL里的,那么就全部放在一台数据库服务器上,我们就假设这台服务器的磁盘空间有2T吧,大家先看下面这张图. 现在问题来了,你不停的往这台服务器的MySQL里放数据,结果数据量越
Spark 以及 spark streaming 核心原理及实践
收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年,2016年入职微信广告中心. 导语 spark 已经成为广告.报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家. 本文
Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基础:包括Spark的运行库.矩阵库和向量库: 算法库:包含广义线性模型.推荐系统.聚类.决策树和评估的算法: 实用程序:包括测试数据的生成.外部数据的读入等功能. MLlib的底层基础解析 底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPAC
Spark运行架构详解
原文引自:http://www.cnblogs.com/shishanyuan/p/4721326.html 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkC
Spark Streaming 架构
图 1 Spark Streaming 架构图 组件介绍: Network Input Tracker : 通 过 接 收 器 接 收 流 数 据, 并 将 流 数 据 映 射 为 输 入DStream. Job Scheduler :周期性地查询 DStream 图,通过输入的流数据生成 Spark Job,将 Spark Job 提交给 Job Manager 进行执行. JobManager:维护一个 Job 队列,将队列中的 Job 提交到 Spark 进行执行. 通 过 图
NET/ASP.NET Routing路由(深入解析路由系统架构原理)(转载)
NET/ASP.NET Routing路由(深入解析路由系统架构原理) 阅读目录: 1.开篇介绍 2.ASP.NET Routing 路由对象模型的位置 3.ASP.NET Routing 路由对象模型的入口 4.ASP.NET Routing 路由对象模型的内部结构 4.1UrlRoutingModule 对象内部结构 4.2RouteBase.Route.RouteCollection.RouteTable 路由核心对象模型 4.3RouteValueDictionary.RouteData
热门专题
虚拟盘root.vdi 复制不了
patchnavicat.exe下载
sql 查询出字段当作另一个的查询条件
go黑帽子 pdf脚本之家
创建用户组linux命令
WPF开发实例——仿QQ登录界面
snort的五种响应机制
ubuntu安装pyhive
Unity场景叠加加载是什么意思
linux清理RAM
androidstudio tv应用如何电脑虚拟机打开
Android model 大全
snapshot不生效
c#如何彻底关闭线程
flutter 隐藏Android底部的虚拟返回键
java怎么对接千牛跟拼多多
iOS uibutton上添加label
BFG Repo-Cleaner工具
Windows to go 无法联网
oracle数值转日期