输出斐波那契数列前 n 项和 对m取摸的结果 #include<bits/stdc++.h> #define LL long long #define N 3 using namespace std; int n,m; void cal(int c[],int a[],int b[][N]) { int temp[N]={0}; for (int i=0; i<N;i++) for (int j=0;j<N;j++) temp[i]=(temp[i]+(LL)a[j]*b[j][i
以前在开发的时候遇到过一个需求,就是要按照某一列进行分组后取前几条数据,今天又有同事碰到了,帮解决了之后顺便写一篇博客记录一下. 首先先建一个基础数据表,代码如下: IF OBJECT_ID(N'Test') IS NOT NULL BEGIN DROP TABLE Test END CREATE TABLE Test(ID bigint IDENTITY(1,1),Name nvarchar(50),Department nvarchar(50)) INSERT IN
1.oracle 取前10条记录 1) select * from tbname where rownum < 11; 2) select * from (select * from tbname order by id desc ) where rownum<=10; 下面是关于rownum的介绍================================三. Rownum和row_number() over()的使用ROWNUM是oracle从8开始提供的一个伪列,是把SQL出来的结果
A - Farey Sequence Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 &l
求阶乘序列前N项和 #include <stdio.h> double fact(int n); int main() { int i, n; double item, sum; while (scanf("%d", &n) != EOF) { sum = 0; if (n <= 12) { for (i = 1; i <= n; i++) { item = fact(i); sum = sum + item; } } printf("%.0f
求平方根序列前N项和 #include <stdio.h> #include <math.h> int main() { int i, n; double item, sum; while (scanf("%d", &n) != EOF) { sum = 0; for (i = 1; i <= n; i++) { item = sqrt(i); sum = sum+item; } printf("sum = %.2f\n", s
求交错序列前N项和 #include <stdio.h> int main() { int numerator, denominator, flag, i, n; double item, sum; while (scanf("%d", &n) != EOF) { flag = 1; numerator = 1; denominator = 1; sum = 0; for (i = 1; i <= n; i++) { item = flag*1.0*numer
求简单交错序列前N项和 #include <stdio.h> int main() { int denominator, flag, i, n; double item, sum; while (scanf("%d", &n) != EOF) { flag = 1; denominator = 1; sum = 0; for (i = 1; i <= n; i++) { item = flag*1.0/denominator; sum = sum+item;
求奇数分之一序列前N项和 #include <stdio.h> int main() { int denominator, i, n; double item, sum; while (scanf("%d", &n) != EOF) { denominator = 1; sum = 0; for (i = 1; i <= n; i++) { item = 1.0/denominator; sum = sum+item; denominator = denomi
求N分之一序列前N项和 #include <stdio.h> int main() { int i, n; double item, sum; while (scanf("%d", &n) != EOF) { sum = 0; for (i = 1; i <= n; i++) { item = 1.0/i; sum = sum+item; } printf("sum = %f\n", sum); } return 0; }
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 13959 Accepted: 3433 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99