首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
tensorflow2.7 多gpu
2024-08-02
TensorFlow指定使用GPU 多块gpu
持续监控GPU使用情况命令: $ watch -n 10 nvidia-smi1一.指定使用某个显卡如果机器中有多块GPU,tensorflow会默认吃掉所有能用的显存, 如果实验室多人公用一台服务器,希望指定使用特定某块GPU.可以在文件开头加入如下代码: import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"os.environ["CUDA_VISIBLE_DEVICES"] = &qu
tensorflow2.0 实现gpu和cpu切换
昨天把GPU版本的tf2.0 安装成功之后,现在所有的代码运行居然都在gpu上跑了,并且在对gpu使用情况没有限制的条件下,既然gpu内存跑满了,代码就崩了怎么样才能随心所欲的指定代码是在cpu还是gpu呢首先若不加任何配置情况下,是默认使用gpu的,加上下面这句代码就使用cpu了 os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
一文上手Tensorflow2.0(四)
系列文章目录: Tensorflow2.0 介绍 Tensorflow 常见基本概念 从1.x 到2.0 的变化 Tensorflow2.0 的架构 Tensorflow2.0 的安装(CPU和GPU) Tensorflow2.0 使用 "tf.data" API "tf.keras"API 使用GPU加速 安装配置GPU环境 使用Tensorflow-GPU 4 使用GPU加速 4.1 安装配置GPU环境 1. 安装GPU版TF 在2.2节中我们已经安装了CPU版
ubuntu python 安装使用虚拟环境 virtualenv
1,虚拟环境是干啥用的? 我在电脑上装了cuda,显卡驱动,cudnn等一堆配套文件,然后又依赖于cuda和驱动安装了tensorflow2.0的gpu测试版,不知为何,我每次跑完tf2程序电脑都会卡死,有可能和我更换过显卡硬件有关,但是我暂时不想卸载重装,万一一个不好电脑的环境崩了我还得从头装一遍,电脑系统中啥都有,想想就费劲,所以打算装个cpu版本的tf2.0先调试看看.所以这时候虚拟环境就是很好的选择了. 2,如何安装? 本人环境: python --version #python3
『TensorFlow2.0正式版教程』极简安装TF2.0正式版(CPU&GPU)教程
0 前言 TensorFlow 2.0,今天凌晨,正式放出了2.0版本. 不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了. 本篇文章就带领大家用最简单地方式安装TF2.0正式版本(CPU与GPU),由我来踩坑,方便大家体验正式版本的TF2.0. 废话不多说现在正式开始教程. 1 环境准备 我目前是在Windows10上面,使用conda管理的python环境,通过conda安装cuda与cudnn(GPU支持),通过pip安装的t
手把手教你安装TensorFlow2 GPU 版本
参考博客:https://blog.csdn.net/weixin_44170512/article/details/103990592 (本文中部分内容引自参考博客,请大家支持原作者!) 感谢大佬的教程,真的非常的通俗易懂! 这里我安装的是Tensorflow2.3cuda版,也就是GPU版本,要安装CPU版本的小伙伴请勿参考本文! 安装步骤 注意:1.安装过程中需要C盘预留出10~15G左右的空间(实际上不需要这么多,为了保险起见尽量多留一些空间) 2.GPU版本需要你电脑的GPU支持Cud
Tensorflow2对GPU内存的分配策略
一.问题源起 从以下的异常堆栈可以看到是BLAS程序集初始化失败,可以看到是执行MatMul的时候发生的异常,基本可以断定可能数据集太大导致memory不够用了. 2021-08-10 16:38:04.917501: E tensorflow/stream_executor/cuda/cuda_blas.cc:226] failed to create cublas handle: CUBLAS_STATUS_NOT_INITIALIZED 2021-08-10 16:38:04.960048
win10 安装tensorflow2.0 GPU版本遇到的坑
背景:我的机器上tensorflow 1.14 & 2.0,这俩版本都有,之前都是用1.14版本,今天试一下2.0尝尝鲜, 结果就掉坑去了 把CUDA10.1 和 cudnn 安装好了 随便写了一段测试代码,用 tf-gpu 跑一下,结果就出现问题了 Bug 如下: Could not load dynamic library 'cudart64_100.dll'; dlerror: cudart64_100.dll not found 这尼玛啥情况,难道是CUDA 和cudnn 版
基于tensorflow2.0 使用tf.keras实现Fashion MNIST
本次使用的是2.0测试版,正式版估计会很快就上线了 tf2好像更新了蛮多东西 虽然教程不多 还是找了个试试 的确简单不少,但是还是比较喜欢现在这种写法 老样子先导入库 import tensorflow as tf import tensorflow_datasets as tfds import numpy as np import matplotlib.pyplot as plt import math import tqdm import tqdm.auto tqdm.tqdm = tqd
Google工程师亲授 Tensorflow2.0-入门到进阶
第1章 Tensorfow简介与环境搭建 本门课程的入门章节,简要介绍了tensorflow是什么,详细介绍了Tensorflow历史版本变迁以及tensorflow的架构和强大特性.并在Tensorflow1.0.pytorch.Tensorflow2.0之间做了对比.最后通过实战讲解了在Google cloud和AWS两个平台上的环境配置. 1-1 课程导学试看 1-2 Tensorflow是什么 1-3 Tensorflow版本变迁与tf1.0架构 1-4 Tensorflow2.0架构试
『TensorFlow2.0正式版』TF2.0+Keras速成教程·零:开篇简介与环境准备
此篇教程参考自TensorFlow 2.0 + Keras Crash Course,在原文的基础上进行了适当的总结与改编,以适应于国内开发者的理解与使用,水平有限,如果写的不对的地方欢迎大家评论指出.觉得文章有用的话麻烦点赞,想看原文可以点击链接kx上网访问. 0 序 TensorFlow经过四年的发展,逐渐成为深度学习与机器学习框架的霸主,市场占有率与用户都遥遥领先于其他竞争对手.下图为下图是KDnuggets网站对2018年的机器学习框架的使用做的一个调查统计.可以可以看出当时Tens
Tensorflow2.0学习(一)
站长资讯平台:今天学习一下Tensorflow2.0 的基础 核心库,@tf.function ,可以方便的将动态图的语言,变成静态图,在某种程度上进行计算加速 TensorFlow Lite TensorFlow.JS TensorFlow Extended 构成了TensorFlow 的生态系统 优势: 1.GPU加速 体现在大数据量运算的时候,的运算时间.如果使用CPU进行运算,那么计算是通过串行模式完成 GPU则会加速运算,并行操作,快速运行. 2.自动求导 自带自动求导工具,方便快速求
colab上基于tensorflow2.0的BERT中文多分类
bert模型在tensorflow1.x版本时,也是先发布的命令行版本,随后又发布了bert-tensorflow包,本质上就是把相关bert实现封装起来了. tensorflow2.0刚刚在2019年10月左右发布,谷歌也在积极地将之前基于tf1.0的bert实现迁移到2.0上,但近期看还没有完全迁移完成,所以目前还没有基于tf2.0的bert安装包面世,因为近期想基于现有发布的模型做一个中文多分类的事情,所以干脆就弄了个基于命令行版本的.过程中有一些坑,随之记录下来. 1. colab:因为
win10配置CUDA+Tensorflow2.0的一些经验
目录 问题描述 安装 tensorflow-cpu-2.0 编译 Nvidia Samples 问题描述 网上已经很多关于配置CUDA的文章,自己这篇文章只是个大致的安装步骤,文章重点是安装和配置的一些细节,而至于具体的步骤(比如软件怎么下,环境变量怎么配等)请自行搜索,我相信大家也不会只参考一篇文章,如有指正或疑问请评论留言,谢谢! 安装 tensorflow-cpu 安装 tensorflow-gpu-2.0,并配置 CUDA 编译 Nvidia Samples 环境:Win10:GPU--
一文上手Tensorflow2.0之tf.keras(三)
系列文章目录: Tensorflow2.0 介绍 Tensorflow 常见基本概念 从1.x 到2.0 的变化 Tensorflow2.0 的架构 Tensorflow2.0 的安装(CPU和GPU) Tensorflow2.0 使用 "tf.data" API "tf.keras"API 使用GPU加速 安装配置GPU环境 使用Tensorflow-GPU 3 TensorFlow2.0使用 3.2 "tf.keras"API Keras是一
一文上手TensorFlow2.0(一)
目录: Tensorflow2.0 介绍 Tensorflow 常见基本概念 从1.x 到2.0 的变化 Tensorflow2.0 的架构 Tensorflow2.0 的安装(CPU和GPU) Tensorflow2.0 的使用 使用 GPU 加速 从现在开始我们就正式进入TensorFlow2.0的学习了,在这一系列文章里我们将重点介绍TensorFlow的基础知识和使用方法,为后面我们使用TensorFlow去解决一些实际的问题做好准备.2019年3月的TensorFlow开发者峰会上,T
TensorFlow2.0使用方法
TensorFlow2.0 1 使用技巧 更新到最新版本: pip install --upgrade tensorflow pip install --upgrade tensorflow-gpu 导入TensorFlow模块: import tensorflow as tf 查看版本号: print('TensorFlow版本号为:', tf.__version__) 查看是否支持GPU运算: rint('GPU是否可用:', tf.test.is_gpu_available()) prin
推荐模型DeepCrossing: 原理介绍与TensorFlow2.0实现
DeepCrossing是在AutoRec之后,微软完整的将深度学习应用在推荐系统的模型.其应用场景是搜索推荐广告中,解决了特征工程,稀疏向量稠密化,多层神经网路的优化拟合等问题.所使用的特征在论文中描述为两个大类数值型(文中couting feature)和类别型.如下图 对于数值型特征可以直接拼接在Embedding向量之后,类别多的特征需要经过Embedding过程.要多说一句,数值的统计特征包括了过去广告点击率,这个在以后实际应用中设计特征可以考虑. 其优化目标就是广告的点击率,即CTR
Anaconda3+CUDA10.1+CUDNN7.6+TensorFlow2.6安装(Ubuntu16)
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 本篇记录了自己在Ubuntu 16.04.7 LTS系统上搭建TensorFlow2开发环境的过程,用于将来重装时的参考 硬件是2018年购买的惠普暗隐精灵3代,显卡GTX1060,已经安装了Ubuntu16 LTS桌面版 执行本篇操作前需要安装Nvidia的驱动,详情请参考<Ubu
人工智能之深度学习-初始环境搭建(安装Anaconda3和TensorFlow2步骤详解)
前言: 本篇文章主要讲解的是在学习人工智能之深度学习时所学到的知识和需要的环境配置(安装Anaconda3和TensorFlow2步骤详解),以及个人的心得体会,汇集成本篇文章,作为自己深度学习的总结与笔记. 内容主要是人工智能和深度学习的简介.环境配置和简单的python实例演示. 对于刚了解人工智能基本常识和具有Python基础的人,再来看本篇文章,就会对人工智能之深度学习有种豁然开朗的感觉,也是对人工智能学习的一种进阶. PS:开发工具包在文章末尾,有需要或者有问题可以评论区留言讨论 一.
tensorflow2.4与目标检测API在3060显卡上的配置安装
目前,由于3060显卡驱动版本默认>11.0,因此,其不能使用tensorflow1版本的任何接口,所以学习在tf2版本下的目标检测驱动是很有必要的,此配置过程同样适用于任何30系显卡配置tf2. 一般配置Anaconda比较简单,这里便跳过,选用的anaconda版本为Anaconda3-2020.11-Windows-x86_64,可以在清华镜像官网上下载. 1,配置安装conda 本次选用的tensorflow版本为2.4,cuda为11.0,cudnn为8.0,对应python为3.7
热门专题
python 空字典,构建字典
selenium 登录淘宝
P3834 【模板】可持久化线段树 2(主席树)
centos shell 获取ip地址后一位
Vbscript 插入 图片 word base
docker tomcat war 无日志
解释文件系统UFS与ZFS
mysql status 等于多个值
scrapy parse运行机制
MATHNET numerics 积分
debian 桌面文件
C# string放入实体类
tomcat集群session共享问题
通过oss获取路径下的所有图片
delphi 文件名 extra
一个大型OJ需要几台评测机
如何在组件中批量使用vuex的state状态
powershell 启动异步线程
adb install -r 未安装
NTP REFLECTION FLOOD是指什么攻击