首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
tensorflow2 ckpt文件怎么预测
2024-11-07
tensorflow的ckpt文件总结
1.TensorFlow的模型文件 --checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.index 2.meta文件 该文件保存的是图结构,meta文件是pb格式,包含变量.结合.OP 3.ckpt文件 二进制文件,存储了weights,biases,gradients等变量 4.checkpoint文件 文本文件,该文件记录了保存的最新的checkpoi
tensorflow 保存训练模型ckpt 查看ckpt文件中的变量名和对应值
TensorFlow 模型保存与恢复 一个快速完整的教程,以保存和恢复Tensorflow模型. 在本教程中,我将会解释: TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如何恢复预测/转移学习的TensorFlow模型? 如何使用导入的预先训练的模型进行微调和修改? 这个教程假设你已经对神经网络有了一定的了解.如果不了解的话请查阅相关资料. 1. 什么是TensorFlow模型? 训练了一个神经网络之后,我们希望保存它以便将来使用.那么什么是TensorFlow模型?
Tensorflow加载预训练模型和保存模型(ckpt文件)以及迁移学习finetuning
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据. 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta
.ckpt文件与.pb文件
.ckpt文件是旧版本的输出saver.save(sess),相当于现在的.ckpt-data checkpoint文件仅用于告知某些TF函数,这是最新的检查点文件. .ckpt-meta 包含元图,即计算图的结构,没有变量的值(基本上可以在tensorboard / graph中看到).saver = tf.train.import_meta_graph(path_to_ckpt_meta) saver.restore(sess, path_to_ckpt_data) .ckpt-index是
把ResNet-L152模型的ckpt文件转化为pb文件
import tensorflow as tf from tensorflow.python.tools import freeze_graph #os.environ['CUDA_VISIBLE_DEVICES']='2' #设置GPU model_path = "D:\\JupyterWorkSpace\\Tensorflow\\Fine-tuning\\tensorflow-resnet-pretrained-20160509\\ResNet-L152.ckpt" #设置mode
tensorflow c++ API加载.pb模型文件并预测图片
tensorflow python创建模型,训练模型,得到.pb模型文件后,用c++ api进行预测 #include <iostream> #include <map> #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #
神经网络 参数计算--直接解析CKPT文件读取
1.tensorflow的模型文件ckpt参数获取 import tensoflow as tf from tensorflow.python import pywrap_tensorflow model_dir = "./ckpt/" ckpt = tf.train.get_checkpoint_state(model_dir) ckpt_path = ckpt.model_checkpoint_path reader = pywrap_tensorflow.NewCheckpoin
吴裕雄 python 神经网络——TensorFlow ckpt文件保存方法
import tensorflow as tf v1 = tf.Variable(tf.random_normal([1], stddev=1, seed=1)) v2 = tf.Variable(tf.random_normal([1], stddev=1, seed=1)) result = v1 + v2 init_op = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as ses
tensorflow ckpt文件转caffemodel时遇到的坑
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545; min-height: 14.0px } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; f
tensorflow学习笔记——模型持久化的原理,将CKPT转为pb文件,使用pb模型预测
由题目就可以看出,本节内容分为三部分,第一部分就是如何将训练好的模型持久化,并学习模型持久化的原理,第二部分就是如何将CKPT转化为pb文件,第三部分就是如何使用pb模型进行预测. 一,模型持久化 为了让训练得到的模型保存下来方便下次直接调用,我们需要将训练得到的神经网络模型持久化.下面学习通过TensorFlow程序来持久化一个训练好的模型,并从持久化之后的模型文件中还原被保存的模型,然后学习TensorFlow持久化的工作原理和持久化之后文件中的数据格式. 1,持久化代码实现 TensorF
tensorflow实战笔记(19)----使用freeze_graph.py将ckpt转为pb文件
一.作用: https://blog.csdn.net/yjl9122/article/details/78341689 这节是关于tensorflow的Freezing,字面意思是冷冻,可理解为整合合并:整合什么呢,就是将模型文件和权重文件整合合并为一个文件,主要用途是便于发布.官方解释可参考:https://www.tensorflow.org/extend/tool_developers/#freezing这里我按我的理解翻译下,不对的地方请指正:有一点令我们为比较困惑的是,tensorf
TensorFlow 模型文件
在这篇 TensorFlow 教程中,我们将学习如下内容: TensorFlow 模型文件是怎么样的? 如何保存一个 TensorFlow 模型? 如何恢复一个 TensorFlow 模型? 如何使用一个训练好的模型进行修改和微调? 1. TensorFlow 模型文件 在你训练完一个神经网络之后,你可能需要将这个模型保存下来,在后续实验中使用或者进行生产部署.那么,TensorFlow 模型文件长什么样呢?TensorFlow 模型主要包含我们已经训练好的网络设计(计算图)和网络参数.因此,T
Spark技术在京东智能供应链预测的应用
1 背景 前段时间京东公开了面向第二个十二年的战略规划,表示京东将全面走向技术化,大力发展人工智能和机器人自动化技术,将过去传统方式构筑的优势全面升级.京东Y事业部顺势成立,该事业部将以服务泛零售为核心,着重智能供应能力的打造,核心使命是利用人工智能技术来驱动零售革新. 1.1 京东的供应链 京东一直致力于通过互联网电商建立需求侧与供给侧的精准.高效匹配,供应链管理是零售联调中的核心能力,是零售平台能力的关键体现,也是供应商与京东紧密合作的纽带,更是未来京东智能化商业体布局中的核心环节. 个
Hadoop基础-镜像文件(fsimage)和编辑日志(edits)
Hadoop基础-镜像文件(fsimage)和编辑日志(edits) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查看日志镜像文件(如:fsimage_0000000000000000767)内容 1>.镜像文件的作用 通过查看上面的XML文件,可以明显的知道镜像文件是存放的是目录结构(你也可以理解是一个树形结构),文件属性等信息,说到这就不说不提一下镜像文件的md5校验文件了,这个校验文件是为了判断镜像文件是否被修改.fsimage文件是namenode中关于元数据的
ML.NET 示例:回归之价格预测
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 出租车费预测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 控制台应用程序 .csv 文件 价格预测 回归 Sdca 回归 在这个介绍性示例中,您
TF的模型文件
TF的模型文件 标签(空格分隔): TensorFlow Saver tensorflow模型保存函数为: tf.train.Saver() 当然,除了上面最简单的保存方式,也可以指定保存的步数,多长时间保存一次,磁盘上最多保有几个模型(将前面的删除以保持固定个数),如下: 创建saver时指定参数: saver = tf.train.Saver(savable_variables, max_to_keep=n, keep_checkpoint_every_n_hours=m) 其中: sava
条件随机场之CRF++源码详解-预测
这篇文章主要讲解CRF++实现预测的过程,预测的算法以及代码实现相对来说比较简单,所以这篇文章理解起来也会比上一篇条件随机场训练的内容要容易. 预测 上一篇条件随机场训练的源码详解中,有一个地方并没有介绍. 就是训练结束后,会把待优化权重alpha等变量保存到文件中,也就是输出到指定的模型文件.在执行预测的时候会从模型文件读出相关的变量,这个过程其实就是数据序列化与反序列化,该过程跟条件随机场算法关系不大,因此为了突出重点源码解析里就没有介绍这部分,有兴趣的朋友可以自己研究一下. CRF++预测
TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式
本文承接上文 TensorFlow-slim 训练 CNN 分类模型(续),阐述通过 tf.contrib.slim 的函数 slim.learning.train 训练的模型,怎么通过人为的加入数据入口(即占位符)来克服无法用于图像推断的问题.要解决这个问题,最简单和最省时的方法是模仿.我们模仿的代码是 TensorFlow 实现的目标检测 API 中的文件 exporter.py,该文件的目的正是要将 TensorFlow-slim 训练的目标检测模型由 .ckpt 格式转化为.pb 格式,
使用C#把Tensorflow训练的.pb文件用在生产环境
训练了很久的Tf模型,终于要到生产环境中去考研一番了.今天花费了一些时间去研究tf的模型如何在生产环境中去使用.大概整理了这些方法. 继续使用分步骤保存了的ckpt文件 这个貌似脱离不了tensorflow框架,而且生成的ckpt文件比较大,发布到生产环境的时候,还得把python的算法文件一起搞上去,如何和其他程序交互,可能还得自己去写服务.估计很少有人这么做,貌似性能也很一般. 使用tensorflow Serving tf Serving貌似是大家都比较推崇的方法.需要编译tfServin
namenode磁盘满引发recover edits文件报错
前段时间公司hadoop集群宕机,发现是namenode磁盘满了, 清理出部分空间后,重启集群时,重启失败. 又发现集群Secondary namenode 服务也恰恰坏掉,导致所有的操作log持续写入edits.new 文件,等集群宕机的时候文件大小已经达到了丧心病狂的70G+..重启集群报错 加载edits文件失败.分析加载文件报错原因是磁盘不足导致最后写入的log只写入一半就宕机了.由于log不完整,hadoop再次启动加载edits文件时读取文件报错.由于edits.new 文件过大,存
热门专题
vue 渲染重复的列表
python拼接字符串6种
TPS(sec)计算公式
flask jinjia2获取session
servelt中使用SPI
glusterfs搭建
android ContentProvider增删改查
IIS 没有Internet信息服务
jython get方法中文乱码
node使用ejs渲染学生数据
一个程序必须要有一个变量吗
django ajax 返回Excel
miller素性检验算法的正确率
js window添加函数
mysql 根据一个表进行数据统计,并更新另一个表
存储过程取json对象数据
java 500转发到 error页面
elasticsearch 手机参数搜索
如何在spacemacs上编写scheme
ultravnc1.4版本远程黑屏