前言 TensorFlow Lite 提供了转换 TensorFlow 模型,并在移动端(mobile).嵌入式(embeded)和物联网(IoT)设备上运行 TensorFlow 模型所需的所有工具.之前想部署tensorflow模型,需要转换成tflite模型. 实现过程 1.不同模型的调用函数接口稍微有些不同 # Converting a SavedModel to a TensorFlow Lite model. converter = lite.TFLiteConverter.from
操作过程: 1. 查看mobilenet的variables loaded = tf.saved_model.load('mobilenet') print('MobileNet has {} trainable variables: {},...'.format( len(loaded.trainable_variables), ', '.join([v.name for v in loaded.trainable_variables[:5]]))) trainable_variable_id
TensorFlow: How to freeze a model and serve it with a python API 参考:https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc 官方的源码:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/too
Cannot interpret feed_dict key as Tensor: Tensor Tensor("Placeholder_8:0", shape=(3, 3, 128, 256), dtype=float32) is not an element of this graph. 后端我使用的是django框架,上传一张图片传入基于tensorflow的keras模型进行预测,重复预测时,报告上述错误.原因大概是第二次预测时,model底层tensorflow的sessio