CVPR2020论文解析:视频分类Video Classification Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications 论文链接:https://arxiv.org/pdf/2003.01455.pdf 摘要 深度学习(deep learning,DL)是在大型数据集上进行训练的,它可以将视频准确地分为数百个不同的类.然而,视频数据的注释是昂贵的.Zero-sh
一.前述 本文分享一篇基于数据集cifa10的经典模型架构和代码. 二.代码 import tensorflow as tf import numpy as np import math import time from tutorials.image.cifar10 import cifar10 from tutorials.image.cifar10 import cifar10_input # 本节使用的数据集是CIFAR-10,这是一个经典的数据集,包含60000张32*32的彩色图像,
Use bigger datasets for CNN in hope of better performance. A new data set for sports video classification: sports-1M. CNN in one frame is about the same as many frames. CNN is good at image but not modeling temporal sequences. The result is not good.
非常妙的经典模型转化啊…… You're given a matrix A of size n × n. Let's call the matrix with nonnegative elements magic if it is symmetric (so aij = aji), aii = 0 and aij ≤ max(aik, ajk) for all triples i, j, k. Note that i, j, k do not need to be distinct. Deter
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le
ARTnet: caffe实现:代码 1 Motivation:How to model appearance and relation (motion) 主要工作是在3D卷积的基础上,提升了action recognition的准确率,没有使用光流信息,因为光流的提取速度特别慢,这可能是未来的研究趋势,该方法更不会像IDT那套方法一样计算复杂. 实验以C3D-ResNet18实现的,只以rgb为输入,训练的时候采用了TSN的稀疏采样策略.appearance分支对每帧图片提取特征(可以看作tw