http://blog.csdn.net/baimafujinji/article/details/77836142 一.数学上的“嵌入”(Embedding) Embed这个词,英文的释义为, fix (an object) firmly and deeply in a surrounding mass, 也就是“嵌入”之意.例如:One of the bullets passed through Andrea's chest before embedding itself in a wall
Word Embedding Word Embedding是一种词的向量表示,比如,对于这样的"A B A C B F G"的一个序列,也许我们最后能得到:A对应的向量为[0.1 0.6 -0.5],B对应的向量为[-0.2 0.9 0.7]. 之所以希望把每个单词变成一个向量,目的还是为了方便计算,比如"求单词A的同义词",就可以通过"求与单词A在cos距离下最相似的向量"来做到. 那么如何进行词嵌入呢?目前主要有三种算法: Embedding
word embedding 具体含义:词的实数向量化表示,可以通过向量相似性度量语义相似性,相似性原理是上下文的一致性 Embedding在数学上表示一个maping, f: X -> Y, 也就是一个function,通俗的翻译是单词嵌入,把X所属空间的单词映射为到Y空间的多维向量,word embedding,就是找到一个映射或者函数,生成在一个新的空间上的表达. 分布式表示 distributed representation 分布式表示的理论基础:上下文相似的词,语义也相似 Harr
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇表中的词汇. 这种表示方法最大的缺点是 它把每个词孤立起来,这样使得算法对相关词的泛化能力不强 例如:对于已知句子"I want a glass of orange ___ " 很可能猜出下一个词是"juice". 如果模型已知读过了这个句子但是当看见句子"I
概述 自然语言是非常复杂多变的,计算机也不认识咱们的语言,那么咱们如何让咱们的计算机学习咱们的语言呢?首先肯定得对咱们的所有文字进行编码吧,那咱们很多小伙伴肯定立马就想出了这还不简单嘛,咱们的计算机不都是ASCII编码的嘛,咱直接拿来用不就好啦?我只能说too young too simple.咱们的计算机只是对咱们的“字母”进行ASCII编码,并没有对咱们的“Word”编码.world应该是咱们处理自然语言的最基本的元素,而不是字母.那么世界上有千千万万的Word,咱们具体怎么表示呢?就算找出
例句: Jane wants to go to Shenzhen. Bob wants to go to Shanghai. 一.词袋模型 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的.例如上面2个例句,就可以构成一个词袋,袋子里包括Jane.wants.to.go.Shenzhen.Bob.Shanghai.假设建立一个数组(或词典)用于映射匹配 [Jane, wants, to, go, Shenzhen, Bob, Shanghai] 那么上面两个例句就可以用