layout: post

title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)

author: "luowentaoaa"

catalog: true

mathjax: true

tags:

- 双连通分量

- 基础DP

- 图论

- 训练指南


The Largest Clique

UVA - 11324

题意

给一张有向图G,求一个结点数最大的结点集,使得该结点中任意两个结点 u 和 v满足:要么 u 可以到达 v, 要么 v 可以到达 u(u 和 v 相互可达也可以)。

题解

同一个强连通分量中的点要么都选,要么不选。把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它的结点数,则题目转化为求SCC图上权最大的路径。所以转化成了dp求DAG上的最长路。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=1e3+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
vector<int>G[maxn],g[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt,sccnum[maxn];
stack<int>S;
void dfs(int u){
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if(!sccno[v]){
lowlink[u]=min(lowlink[u],pre[v]);
}
}
if(lowlink[u]==pre[u]){
scc_cnt++;
for(;;){
int x=S.top();S.pop();
sccno[x]=scc_cnt;
sccnum[scc_cnt]++;
if(x==u)break;
}
}
}
void find_scc(int n){
dfs_clock=scc_cnt=0;
memset(sccno,0,sizeof(sccno));
memset(pre,0,sizeof(pre));
memset(sccnum,0,sizeof(sccnum));
for(int i=0;i<n;i++)
if(!pre[i])dfs(i);
}
int d[maxn];
int dp(int i){
int &ans=d[i];
if(ans>=0)return ans;
ans=sccnum[i];
for(int j=0;j<g[i].size();j++){
int v=g[i][j];
ans=max(ans,dp(v)+sccnum[i]);
}
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int t;
// freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
cin>>t;
while(t--){
int n,m;
cin>>n>>m;
for(int i=0;i<=n;i++)G[i].clear(),g[i].clear();
int u,v;
for(int i=0;i<m;i++){
cin>>u>>v;
u--;v--;
G[u].push_back(v);
}
find_scc(n);
memset(d,-1,sizeof(d));
for(int u=0;u<n;u++)
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(sccno[u]!=sccno[v])
g[sccno[u]].push_back(sccno[v]);
}
int ans=0;
for(int i=1;i<=scc_cnt;i++)
ans=max(ans,dp(i));
cout<<ans<<endl;
} return 0;
}

训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)的更多相关文章

  1. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  2. POJ3177 Redundant Paths(边双连通分量+缩点)

    题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...

  3. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  4. 训练指南 UVA - 11419(二分图最小覆盖数)

    layout: post title: 训练指南 UVA - 11419(二分图最小覆盖数) author: "luowentaoaa" catalog: true mathjax ...

  5. 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y))

    layout: post title: 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y)) author: "luowentaoaa" cata ...

  6. 训练指南 UVA - 11354(最小生成树 + 倍增LCA)

    layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...

  7. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  8. 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)

    layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...

  9. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

随机推荐

  1. 【题解】[WC2006]水管局长

    感觉这题好强啊……本来以为能过,结果毫无疑问的被ge了一顿……在这里记录一下做的过程,也免得以后又忘记啦. 首先,我们应看出在这张图上,要让经过的水管最长的最短,就是要维护一棵动态的最小生成树.只是删 ...

  2. BZOJ1513 [POI2006]Tet-Tetris 3D 【二维线段树】

    题目链接 BZOJ1513 题解 真正地理解了一波线段树标记永久化的姿势 每个节点维护两个值\(v\)和\(tag\) \(v\)代表儿子中的最值 \(tag\)代表未下传的最值 显然节点的区间大于等 ...

  3. 面试前需要弄懂的SQL

    说明:创建数据库 view source   print? 1 Create DATABASE database-name 说明:删除数据库 view source   print? 1 drop d ...

  4. CSS样式权重的级联cascade的概念

    我们知道,firefox在众多浏览器中是对css 2高度兼容的一款浏览器,那是我能够编写一个中型b2b网站的时候(并不能说是我遇到过的难题)在禅意花园中看到的一个案例,说的是某个菜单在css中定义了以 ...

  5. readelf用法小记

    By francis_hao    Feb 14,2017 显示ELF文件的信息 用法概述 readelf和objdump类似,不过,readelf会显示更详细的信息,而且独立于BFD库,因此当BFD ...

  6. POJ1511:Invitation Cards(最短路)

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 34743   Accepted: 114 ...

  7. ng的ngModel用来处理表单操作

    https://segmentfault.com/a/1190000009126012

  8. oracle与mysql的group by语句

    之所以去纠那么细节的问题,是因为之前有过一个这样的场景: 有个同学,给了一条数据库的语句给我,问,为啥这样子的语句在oracle语句下执行不了. 1 select * from xx where xx ...

  9. 转载:Java中的String与常量池

    转载自http://developer.51cto.com/art/201106/266454.htm.感觉总结的不错,自己收藏一下. string是java中的字符串.String类是不可变的,对S ...

  10. centos 下构建lamp环境

    构建准备: 1.配置防火墙,开启80端口.3306端口 vi /etc/sysconfig/iptables -A INPUT -m state --state NEW -m tcp -p tcp - ...