就是化柿子

我们求

\[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}
\]

的正整数解的个数

喜闻乐见的化柿子了

\[\frac{x+y}{xy}=\frac{1}{n!}
\]

\[xy=xn!+yn!
\]

\[xy-xn!=yn!
\]

\[x=\frac{yn!}{y-n!}
\]

所以这里的\(y\)显然是要大于\(n!\)的

设\(y=n!+c\)

那么

\[x=\frac{n!(n!+c)}{n!+c-n!}=\frac{n!(n!+c)}{c}=\frac{(n!)^2+n!c}{c}
\]

\[x=\frac{(n!)^2}{c}+\frac{n!c}{c}=\frac{(n!)^2}{c}+n!
\]

因为\(x\)也是正整数,就是说现在\(c\)是\((n!)^2\)的约数

问题也就变成了求\(d((n!)^2)=\sum_{i|n}1\)

之后线筛一下暴力分解质因数就好了

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define re register
#define maxn 1000005
const LL mod=1e9+7;
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int n;
int f[maxn],p[maxn>>1];
int to[maxn],num[maxn>>1];
int main()
{
scanf("%d",&n);
f[1]=1;
for(re int i=2;i<=n;i++)
{
if(!f[i]) p[++p[0]]=i,to[i]=p[0],num[to[i]]++;
for(re int j=1;j<=p[0]&&p[j]*i<=n;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
for(re int i=2;i<=n;i++)
if(f[i])
{
int mid=i;
int up=std::sqrt(i);
for(re int j=1;j<=p[0]&&p[j]<=up;j++)
{
while(mid%p[j]==0) num[j]++,mid/=p[j];
if(mid==1) break;
}
if(mid!=1) num[to[mid]]++;
}
LL ans=1;
for(re int i=1;i<=p[0];i++)
ans=(ans*(2*num[i]+1))%mod;
std::cout<<(ans%mod);
return 0;
}

【[Violet]樱花】的更多相关文章

  1. Luogu1445 [Violet]樱花 ---- 数论优化

    Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...

  2. bzoj2721 / P1445 [Violet]樱花

    P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...

  3. 洛谷P1445 [Violet] 樱花 (数学)

    洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...

  4. 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论

    题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...

  5. Luogu P1445[Violet]樱花/P4167 [Violet]樱花

    Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...

  6. luoguP1445 [Violet]樱花

    链接P1445 [Violet]樱花 求方程 \(\frac {1}{X}+\frac {1}{Y}=\frac {1}{N!}\) 的正整数解的组数,其中\(N≤10^6\),模\(10^9+7\) ...

  7. BZOJ2721或洛谷1445 [Violet]樱花

    BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...

  8. Luogu1445 [Violet]樱花

    题面 题解 $$ \frac 1x + \frac 1y = \frac 1{n!} \\ \frac{x+y}{xy}=\frac 1{n!} \\ xy=n!(x+y) \\ xy-n!(x+y) ...

  9. Bzoj2721 [Violet]樱花(筛法)

    题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow ( ...

  10. [Violet]樱花

    题目链接 洛谷 狗粮版 前置技能 初中基础的因式分解 线性筛 \(O(nlog)\)的分解质因数 唯一分解定理 题解 首先来分解一下式子 \[\frac{1}{x}+\frac{1}{y}=\frac ...

随机推荐

  1. (转)CentOS 7 sytemctl 自定义服务开机启动

    CentOS 7 sytemctl 自定义服务开机启动 原文:http://blog.csdn.net/ithomer/article/details/51766319 CentOS 7继承了RHEL ...

  2. 第十五章:集成JPUSH

    如果不想自己搭建push server,则可以借助于第三方的api来实现push的功能,本文主要介绍ionic如何集成jpush. 具体步骤如下: 创建ionic应用:ionic_jpush. 申请j ...

  3. Bootstrap 斜体、文本对齐、缩略图、地址、列表等

    目录1.标题2.页面主体3.强调    a.小号文本    b.着重    c.斜体    d.对齐class    e.强调class4.缩略语5.地址6.列表    a.无序列表    b.有序列 ...

  4. centOS查看apache版本的命令

    在centOS 7下: 命令如下: httpd -v

  5. JS 用正则表达式,验证密码包含数字和字母的方法

    必须包含至少一位数字和一位字母,脚本方法如下: function CheckPassWord(password) {//密码必须包含数字和字母 var str = password; if (str ...

  6. nyoj 12——喷水装置二——————【贪心-区间覆盖】

    喷水装置(二) 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的 ...

  7. React之特点及常见用法

    1.什么是React? React是一个用于构建用户界面的JavaScript库.主要用于构建UI,很多人认为Reatc是MVC中的V(视图). React起源于Facebook的内部项目,用来架构I ...

  8. 纯代码编写的vc跳转SB

    今天遇到个问题,我整个项目都是纯代码,突然有个引用的VC用了storyboard,导航的跳转不知道如何操作,最后试了很多方法总算可以了 首先,找到要跳转的sb. UIStoryboard *story ...

  9. Java日志框架解析及实战分析

    转载自: https://zhuanlan.zhihu.com/p/24272450 https://zhuanlan.zhihu.com/p/24275518 作为Java程序员,幸运的是,Java ...

  10. python中的字符串 列表 字典

    字符串     一个有序的字符集合  不可变 1,可以使用for in语句进行迭代循环,返回元素    2,in类是于str.find()方法但是是返回布尔结果        str.find()返回 ...