【[Violet]樱花】
就是化柿子
我们求
\]
的正整数解的个数
喜闻乐见的化柿子了
\]
\]
\]
\]
所以这里的\(y\)显然是要大于\(n!\)的
设\(y=n!+c\)
那么
\]
\]
因为\(x\)也是正整数,就是说现在\(c\)是\((n!)^2\)的约数
问题也就变成了求\(d((n!)^2)=\sum_{i|n}1\)
之后线筛一下暴力分解质因数就好了
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define re register
#define maxn 1000005
const LL mod=1e9+7;
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int n;
int f[maxn],p[maxn>>1];
int to[maxn],num[maxn>>1];
int main()
{
scanf("%d",&n);
f[1]=1;
for(re int i=2;i<=n;i++)
{
if(!f[i]) p[++p[0]]=i,to[i]=p[0],num[to[i]]++;
for(re int j=1;j<=p[0]&&p[j]*i<=n;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
for(re int i=2;i<=n;i++)
if(f[i])
{
int mid=i;
int up=std::sqrt(i);
for(re int j=1;j<=p[0]&&p[j]<=up;j++)
{
while(mid%p[j]==0) num[j]++,mid/=p[j];
if(mid==1) break;
}
if(mid!=1) num[to[mid]]++;
}
LL ans=1;
for(re int i=1;i<=p[0];i++)
ans=(ans*(2*num[i]+1))%mod;
std::cout<<(ans%mod);
return 0;
}
【[Violet]樱花】的更多相关文章
- Luogu1445 [Violet]樱花 ---- 数论优化
Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...
- bzoj2721 / P1445 [Violet]樱花
P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...
- 洛谷P1445 [Violet] 樱花 (数学)
洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...
- 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论
题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...
- Luogu P1445[Violet]樱花/P4167 [Violet]樱花
Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...
- luoguP1445 [Violet]樱花
链接P1445 [Violet]樱花 求方程 \(\frac {1}{X}+\frac {1}{Y}=\frac {1}{N!}\) 的正整数解的组数,其中\(N≤10^6\),模\(10^9+7\) ...
- BZOJ2721或洛谷1445 [Violet]樱花
BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...
- Luogu1445 [Violet]樱花
题面 题解 $$ \frac 1x + \frac 1y = \frac 1{n!} \\ \frac{x+y}{xy}=\frac 1{n!} \\ xy=n!(x+y) \\ xy-n!(x+y) ...
- Bzoj2721 [Violet]樱花(筛法)
题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow ( ...
- [Violet]樱花
题目链接 洛谷 狗粮版 前置技能 初中基础的因式分解 线性筛 \(O(nlog)\)的分解质因数 唯一分解定理 题解 首先来分解一下式子 \[\frac{1}{x}+\frac{1}{y}=\frac ...
随机推荐
- Android应用捕获全局异常自定义处理
[2016-06-30]最新的全局异常处理DRCrashHandler已经集成在DR_support_lib库中 具体请看: https://coding.net/u/wrcold520/p/DR_s ...
- Oracle 查询单挑语句运行时间
pl/sql 不考虑网络IO等影响 declare guidname ):='255fc3db-815a-46c1-9187-ec0256305335'; timespa timestamp:=CUR ...
- GreenPlum 大数据平台--安装
1. 环境准备 01, 安装包准备: Greenplum : >>>>链接地址 Pgadmin客户端 : >>>链接地址 greenplum-cc-web ...
- mysql 显示树结构表的节点全路径
SELECT TYPEID AS TYPEID, pTYPEID AS 父TYPEID, levels AS 父到子之间级数, concat(paths, ',', TYPEID) AS 父到子路径, ...
- Ubuntu 12.04 搭建 SAMBA-SWAT(Samba Web 管理工具)
参考了:http://linux.chinaunix.net/techdoc/net/2007/03/14/952274.shtml,对其进行了部分修改完善. 依次执行 1.sudo apt-get ...
- djang4o查询某个字段的值
# -*- coding:utf-8 -*-import os,sysBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file ...
- 一个典型案例为你解读TDSQL 全时态数据库系统
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯技术工程官方号发表在腾讯云+社区 经典案例 增量抽取.增量计算等都是T-TDSQL的经典案例.如下以增量计算为例,来分析T-TDS ...
- CityBuilder导入OSGB,生成3DML填坑
工具:CityBuilder 问题1:导入osgb时,中文路径报错 当导入osgb layer时,Input folder和output foder 中最好不要出现中文 否则可能报出如下错误: 日志: ...
- [转]Debugging into .NET Core源代码的两种方式
本文转自:http://www.cnblogs.com/maxzhang1985/p/6015719.html 阅读目录 一.前言 二.符号服务器 三.项目中添加ASP.NET Core源代码 四.写 ...
- ajax返回数据之前的loading等待
首先,我们通过ajax请求,向后台传递参数,然后后台经过一系列的运算之后向前台返还数据,我希望在等待数据成功返还之前可以展示一个loading.gif图 不废话,在页面上执行点击事件(<a sc ...