最短路径算法 SP
#include<stdio.h>
#include<string.h>
#include<stack>
using namespace std;
const int N=;
const int INF=0x3f3f3f3f;
int p[N][N],d[N],path[N]; ///path数组用于记录路径 void dijkstra(int sec,int n) ///sec为出发节点,n表示图中节点总数
{
int i,j,min,min_num;
int vis[N]={,};
for(i=;i<n;i++)
{
d[i]=p[sec][i];
}
vis[sec]=;d[sec]=;
for(i=;i<n;i++)
{
min=INF;
for(j=;j<n;j++)
{
if(!vis[j]&&d[j]<min)
{
min=d[j];
min_num=j;
}
}
vis[min_num]=;
for(j=;j<n;j++)
{
if(!vis[j]&&d[j]>min+p[min_num][j])
{
path[j]=min_num;
///path[j]记录d[j]暂时最短路径的最后一个中途节点min_num,
///表明d[j]最后一段从节点min_num到节点j
d[j]=min+p[min_num][j];
}
}
}
}
void print(int sec,int n) ///sec为出发节点,n表示图中节点总数
{
int i,j;
stack<int> q; ///由于记录的中途节点是倒序的,所以使用栈(先进后出),获得正序
for(i=;i<n;i++) ///打印从出发节点到各节点的最短距离和经过的路径
{
j=i;
while(path[j]!=-) ///如果j有中途节点
{
q.push(j); ///将j压入堆
j=path[j]; ///将j的前个中途节点赋给j
}
q.push(j);
printf("%d=>%d, length:%d, path: %d ",sec,i,d[i],sec);
while(!q.empty()) ///先进后出,获得正序
{
printf("%d ",q.top());///打印堆的头节点
q.pop(); ///将堆的头节点弹出
}
printf("\n");
}
}
int main()
{
memset(path,-,sizeof(path));///将path数组初始化为-1
int i,j,n=;
for(i=;i<n;i++)
{
for(j=;j<n;j++)
{
p[i][j]=(i==j?:INF);
}
}
///p[0][1]=10;p[0][3]=30;p[1][2]=50;p[1][4]=100;p[2][4]=5;p[3][2]=20;p[3][4]=60;p[4][5]=10;//p[i][j]表示节点i到节点j的距离
/*p[0][1]=10;p[1][0]=10;p[1][2]=1;p[2][1]=1;
p[2][4]=4;p[4][2]=4;p[0][3]=2;p[3][0]=2;p[3][2]=1;p[2][3]=1;
p[3][4]=7;p[4][3]=7;*/
p[][]=;p[][]=;
p[][]=;p[][]=;
p[][]=;p[][]=;
p[][]=;p[][]=;p[][]=;p[][]=;
dijkstra(,n); ///求从节点0出发到各节点的最短距离
print(,n); ///打印从节点0出发到各节点的最短距离和路径
return ;
}
最短路径算法 SP的更多相关文章
- 加权图的最小生成树、最短路径算法 - java实现
加权图相关算法 前言 本文主要介绍加权图算法中两个重要应用:最小生成树和最短路径. 求最小生成树时针对的是加权无向图,加权有向图的最小生成树算法成为"最小属树形图"问题,较为复杂, ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
- Dijkstra 单源最短路径算法
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...
- Bellman-Ford 单源最短路径算法
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...
- 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)
几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3). Floyd-Warshall算法(Floyd ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- 无向图的最短路径算法JAVA实现
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图. ...
- 最短路径算法之Dijkstra算法(java实现)
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...
随机推荐
- C#的委托Delegate
一.委托基础 1.什么是委托 委托(Delegate) 是存有对某个方法的引用的一种引用类型变量,用关键字delegate申明,实现相同返回值和参数的函数的动态调用,提供了对方法的抽象. 委托(Del ...
- 线上环境HBASE-1.2.0出现oldWALs无法自动回收情况;
正常情况下,hmaster会定期清理oldWALs文件夹,一般该文件大小也就几百兆,但是我们线上 环境出现了该文件没有自动回收情况,如图: 该目录占用hdfs空间多达7.6T,浪费空间: 后来经过多番 ...
- node 发送 post 请求 get请求。
因为我们部门打算用node请求restful 然后慢慢替换掉服务端,以后直接请求soa的接口,让前端的数据更贴切项目,因为我们服务端接口和app公用一套,由于业务的需求和版本不统一(例如app6.4的 ...
- 从循环里面用QPixmap new对象很耗时联想到的
1.在循环里面用QPixmap new图片对象延迟很高,这个是通过打时间日志得出的,深层原因还不清楚: 2.自制的图片浏览器在初始化的时候会初始化自己的一个图片列表,所以要用到上面的描述.所有图片的初 ...
- jqgrid-parmNames和jsonReader的使用,以及json的返回格式(转)
prmNames : { page:"page", // 表示请求页码的参数名称 rows:"rows", // 表示请求行数的参数名称 sort: ...
- Django2.1.3框架中(fields.E300)和(fields.E307)报错处理
使用Django框架创建了Web项目,修改了模型models.py之后,执行数据库迁移操作,出现如下报错: models.py内容如下: from django.db import models fr ...
- Leetcode 672.灯泡开关II
灯泡开关II 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2, 3 . ...
- Queue模块初识
Queue模块实现了多生产者.多消费者队列.它特别适用于信息必须在多个线程间安全地交换的多线程程序中.这个模块中的Queue类实现了所有必须的锁语义.它依赖于Python中线程支持的可用性:参见thr ...
- android问题笔记集
开发工具:android studio2.2 调试:手机直连调试,版本(android6) 问题1: Error:Unable to start the daemon process. This pr ...
- POJ 1149 PIGS(最大流)
Description Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock an ...