Codeforces 964C Alternating Sum
题意很简单 就是对一个数列求和。
题解:如果不考虑符号 每一项都是前一项的 (b/a)倍, 然后考虑到符号的话, 符号k次一循环, 那么 下一个同一符号的位置 就是 这一个位置的 (b/a)^k倍了, 然后我们可以发现这个是一个等比数列, 最后我们对等比数列求和就好了。
注意的就是 (b/a)^k % mod == 1的情况,我们可以将前K个数总和在一起, 在一起求等比的和就好了。
我们可以将公式 cir*(1-q^time) / (1 - q) 其中q = (b/a)^k 转化成 cir * (a1^(time*k) - b^(time*k)) / (a1^(time*k) - b^k * a ^((t-1)*k)) 然后因为要进行mod操作 所以 再转换成 cir * (a1^(time*k) - b^(time*k)) *inv( (a1^(time*k) - b^k * a ^((t-1)*k))) 就好了。
代码:
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const LL mod = 1e9+;
const int N = 1e5+;
int n, a, b, k;
char str[N];
LL qpow(int a, int b){
LL ret = ;
while(b){
if(b&) ret = (ret*a)%mod;
a = (a%mod*a%mod) % mod;
b >>= ;
}
return ret%mod;
}
int main(){
scanf("%d%d%d%d",&n,&a,&b,&k);
scanf("%s", str);
int len = strlen(str);
LL ans = ;
LL tmp, cir = ;
for(int i = ; i < len; i++){
tmp = qpow(a,n-i) * qpow(b,i) % mod;
if(str[i] == '+') {
cir += tmp;
cir %= mod;
}
else {
cir -= tmp;
if(cir < ) cir += mod;
cir %= mod;
}
}
int time = (n+) / len;
int lf = n+ - len*time;
int be = len*time;
for(int i = ; be <= n; i++, be++){
tmp = qpow(a,n-be) * qpow(b,be) % mod;
if(str[i] == '+') {
ans += tmp;
ans %= mod;
}
else {
ans -= tmp;
if(ans < ) ans += mod;
ans %= mod;
}
}
LL t1 = (qpow(a,len*time) - qpow(b,len*time))%mod;
if(t1 < ) t1 += mod;
LL t2 = (qpow(a,len*time) % mod - qpow(b,len)*qpow(a,(time-)*len)%mod) %mod;
if(t2 < ) t2 += mod;
LL t3 = t1 *(qpow(t2,mod-))% mod;
if(t2!=){
ans = (ans + cir * t3 % mod)%mod;
}
else {
ans = (ans+cir*time%mod)%mod;
}
printf("%I64d", ans);
return ;
}
/*
8 2 3 2
++
*/
Codeforces 964C Alternating Sum的更多相关文章
- codeforces 963A Alternating Sum
codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...
- Codeforces 963A Alternating Sum(等比数列求和+逆元+快速幂)
题目链接:http://codeforces.com/problemset/problem/963/A 题目大意:就是给了你n,a,b和一段长度为k的只有'+'和‘-’字符串,保证n+1被k整除,让你 ...
- CF 964C Alternating Sum
给定两正整数 $a, b$ .给定序列 $s_0, s_1, \dots, s_n,s_i$ 等于 $1$ 或 $-1$,并且已知 $s$ 是周期为 $k$ 的序列并且 $k\mid (n+1)$,输 ...
- Codeforces 963A Alternating Sum ( 思维 && 数论 )
题意 : 题目链接 分析 : Tutorial 讲的很清楚 至于为什么这样去考虑 算是一个经验问题吧 如果一个问题要你给出模意义下的答案 就多考虑一下答案是要用逆元构造出来 也就说明有除法的存在 那么 ...
- Codeforces 963E Alternating Sum 等比数列+逆元
题目大意: 看一下样例就明白了 基本思路: 题目中明确提到k为一个周期,稍作思考,把k项看作一项,然后发现这是个等比数列,q=(b/a)^k, 然后重点就是怎样处理等比数列求和表达式中的除法,这个时候 ...
- Codeforces 963 A. Alternating Sum(快速幂,逆元)
Codeforces 963 A. Alternating Sum 题目大意:给出一组长度为n+1且元素为1或者-1的数组S(0~n),数组每k个元素为一周期,保证n+1可以被k整除.给a和b,求对1 ...
- Codeforces 396B On Sum of Fractions 数论
题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...
- CF963A Alternating Sum
思路:利用周期性转化为等比数列求和. 注意当a != b的时候 bk * inv(ak) % (109 + 9)依然有可能等于1,不知道为什么. 实现: #include <bits/stdc+ ...
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
随机推荐
- Git 学习笔记之(一) 使用 git gui 从github上下载代码
背景: 目前一些开源代码均在 GitHub上管理的,包括自己写的代码也可以放在上面进行管理.但问题是,当你换一台电脑,想要将你自己放在 GitHub 上的代码工程下载下来的时候,会遇到各种问题,目前可 ...
- django+uwsgi+nginx 部署生产环境
一.Uwsgi安装 python3 -m pip install uwsgi cp /usr/local/python3/bin/uwsgi /usr/bin/ 测试 在django项目主目录下cre ...
- Android:JNI与NDK(三)NDK构建的脚本文件配置
友情提示:欢迎关注本人公众号,那里有更好的阅读体验以及第一时间获取最新文章 本文目录 一.前言 本篇我们介绍Android.mk与CMakeLists.txt构建NDK的配置文件,我们知道目前NDK的 ...
- Resource 使用详解
极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...
- 【网站公告】.NET Core 版博客站点第二次发布尝试
在上次发布失败后,很多朋友建议我们改用 k8s ,但我们还是想再试试 docker swarm ,实在不行再改用 k8s . 在改进了 docker swarm 集群的部署后,我们准备今天 17:30 ...
- 灰度级分层(一些基本的灰度变换函数)基本原理及Python实现
1. 基本原理 灰度级分层通常用于突出感兴趣的特定灰度范围内的亮度.灰度级分层有两大基本方法. 将感兴趣的灰度范围内的值显示为一个值(比如0),而其他范围的值为另外一个值(255). 将感兴趣的灰度范 ...
- 【Java例题】2.1复数类
1.定义复数类,包括实部和虚部变量.构造方法. 加减乘除方法.求绝对值方法和显示实部.虚部值的方法. 然后编写一个主类,在其主方法中通过定义两个复数对象来 显示每一个复数的实部值.虚部值和绝对值, 显 ...
- 喜大普奔 | 微信小程序支持PC端打开了
微信小程序可以在PC端打开啦 微信PC版发布了v2.7.0测试版,其中一个重磅的功能就是:支持打开聊天中分享的小程序 咖啡君这么喜欢尝鲜的人自然是在第一时间下载进行了体验 安装成功,会有功能更新说明 ...
- 详解阿里P7架构师是怎么在Spring中实现事务暂停
摘要 Spring框架是一个流行的基于轻量级控制反转容器的Java/J2EE应用框架,尤其在数据访问和事务管理方面的能力是众所周知的.Spring的声明性事务分离可以应用到任何POJO目标对象,并且包 ...
- 【KakaJSON手册】06_Model转JSON
前面的文章介绍了如何利用KakaJSON进行JSON转Model,从这篇文章开始介绍如何将Model转成JSON 生成JSON和JSONString struct Car: Convertible { ...