参考资料:python机器学习库sklearn——DBSCAN密度聚类,     Python实现DBScan

import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler # #############################################################################
# 产生样本数据
centers = [[1, 1], [-1, -1], [1, -1]] # 生成聚类中心点
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,random_state=0) # 生成样本数据集 X = StandardScaler().fit_transform(X) # StandardScaler作用:去均值和方差归一化。且是针对每一个特征维度来做的,而不是针对样本。 # 参数设置
aa = []
for i in range(X.shape[0]-1):
for j in range(i+1,X.shape[0]):
aa.append(np.power(X[i]-X[j], 2).sum())
plt.hist(aa, bins=10, density=1, edgecolor ='k', facecolor='g', alpha=0.75) # 调参#############################################################################
t0 = time.time()
optimum_parameter = [0,0,0]
for r in np.linspace(0.1, 0.3, 5):
for min_samples in range(5,12):
db = DBSCAN(eps=r, min_samples=min_samples).fit(X)
score = metrics.silhouette_score(X, db.labels_)
print('(%0.2f, %d) 轮廓系数: %0.3f'%(r, min_samples, score))
if score > optimum_parameter[2]: optimum_parameter=[r, min_samples, score]
print('最佳参数为:eps=%0.2f, min_samples=%d, 轮廓系数=%0.3f'%(optimum_parameter[0], optimum_parameter[1], optimum_parameter[2]))
print('调参耗时:', time.time()-t0) # #############################################################################
# 调用密度聚类 DBSCAN
db = DBSCAN(eps=0.3, min_samples=9).fit(X)
# print(db.labels_) # db.labels_为所有样本的聚类索引,没有聚类索引为-1
# print(db.core_sample_indices_) # 所有核心样本的索引
core_samples_mask = np.zeros_like(db.labels_, dtype=bool) # 设置一个样本个数长度的全false向量
core_samples_mask[db.core_sample_indices_] = True #将核心样本部分设置为true
labels = db.labels_ # 获取聚类个数。(聚类结果中-1表示没有聚类为离散点)
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) # 模型评估
print('估计的聚类个数为: %d' % n_clusters_)
print("同质性: %0.3f" % metrics.homogeneity_score(labels_true, labels)) # 每个群集只包含单个类的成员。
print("完整性: %0.3f" % metrics.completeness_score(labels_true, labels)) # 给定类的所有成员都分配给同一个群集。
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) # 同质性和完整性的调和平均
print("调整兰德指数: %0.3f" % metrics.adjusted_rand_score(labels_true, labels))
print("调整互信息: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels))
print("轮廓系数: %0.3f" % metrics.silhouette_score(X, labels)) # #############################################################################
# Plot result
import matplotlib.pyplot as plt # 使用黑色标注离散点
unique_labels = set(labels)
colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1: # 聚类结果为-1的样本为离散点
# 使用黑色绘制离散点
col = [0, 0, 0, 1] class_member_mask = (labels == k) # 将所有属于该聚类的样本位置置为true xy = X[class_member_mask & core_samples_mask] # 将所有属于该类的核心样本取出,使用大图标绘制
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] # 将所有属于该类的非核心样本取出,使用小图标绘制
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

  

  

  

  

密度聚类 - DBSCAN算法的更多相关文章

  1. 31(1).密度聚类---DBSCAN算法

    密度聚类density-based clustering假设聚类结构能够通过样本分布的紧密程度确定. 密度聚类算法从样本的密度的角度来考察样本之间的可连接性,并基于可连接样本的不断扩张聚类簇,从而获得 ...

  2. 聚类——密度聚类DBSCAN

    Clustering 聚类 密度聚类——DBSCAN 前面我们已经介绍了两种聚类算法:k-means和谱聚类.今天,我们来介绍一种基于密度的聚类算法——DBSCAN,它是最经典的密度聚类算法,是很多算 ...

  3. 吴裕雄 python 机器学习——密度聚类DBSCAN模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  4. 密度聚类 DBSCAN

    刘建平:DBSCAN密度聚类算法 https://www.cnblogs.com/pinard/p/6208966.html API 的说明: https://www.jianshu.com/p/b0 ...

  5. 31(2).密度聚类---Mean-Shift算法

    Mean-Shift 是基于核密度估计的爬山算法,可以用于聚类.图像分割.跟踪等领域.

  6. 基于密度聚类的DBSCAN和kmeans算法比较

    根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性.  场景 一 假设有如下图的一组数据, 生成数据 ...

  7. 机器学习(十)—聚类算法(KNN、Kmeans、密度聚类、层次聚类)

    聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性, ...

  8. 机器学习(六)K-means聚类、密度聚类、层次聚类、谱聚类

    本文主要简述聚类算法族.聚类算法与前面文章的算法不同,它们属于非监督学习. 1.K-means聚类 记k个簇中心,为\(\mu_{1}\),\(\mu_{2}\),...,\(\mu_{k}\),每个 ...

  9. DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...

随机推荐

  1. GO语言规范

    1.golang的命名推荐使用驼峰命名法,必须以一个字母(Unicode字母)或下划线开头,后面可以跟任意数量的字母.数字或下划线. 2.golang中根据首字母的大小写来确定可以访问的权限.无论是方 ...

  2. go语言设计模式之Concurrency pipeline

    pipeline.go package pipeline func LaunchPipeline(amount int) int { firstCh := generator(amount) seco ...

  3. js如何手写一个new

    手写new 看一下正常使用new function Dog(name){ this.name = name } Dog.prototype.sayName = function(){ console. ...

  4. HTML连载42-清空默认边距、文字行高

    一.            webstorm取色技巧:webstorm内置了颜色取色器,我们对某种颜色未知的时候,可以利用下图中的取色器,进行颜色识别. 二.系统会默认给body添加外边距,因此我们对 ...

  5. ReactNative: ReactNative初始项目的结构

    一.介绍 初学RN,一切皆新.在上篇中成功地创建并运行了一个React-Native项目,这个demo的基本结构都是系统已经创建好的,开发者在此结构下完成自己的开发即可.分别用Xcode和WebSto ...

  6. Vue ---- 组件文件分析 组件生命周期钩子 路由 跳转 传参

    目录 Vue组件文件微微细剖 Vue组件生命周期钩子 Vue路由 1.touter下的index.js 2.路由重定向 3.路由传参数 补充:全局样式导入 路由跳转 1. router-view标签 ...

  7. numpy的一点学习

    1.Numpy模块 NumPy是Python中的一个运算速度非常快的一个数学库,它非常重视数组.它允许你在Python中进行向量和矩阵计算,并且由于许多底层函数实际上是用C编写的,因此你可以体验在原生 ...

  8. Kettle在windows上安装

    Kettle是一款国外开源的ETL工具,纯java编写,可以在Windows.Linux.Unix上运行,数据抽取高效稳定. 因为有个日常提数,工作日每天都要从数据库中提取数据,转换为excel,再以 ...

  9. 《细说PHP》第四版 样章 第18章 数据库抽象层PDO 2

    18.2  PDO所支持的数据库 使用PHP可以处理各种数据库系统,包括MySQL.PostgreSQL.Oracle.MsSQL等.但访问不同的数据库系统时,其所使用的PHP扩展函数也是不同的.例如 ...

  10. Java设计模式:Factory Method(工厂方法)模式

    概念定义 工厂方法(Factory Method)模式,又称多态工厂(Polymorphic Factory)模式或虚拟构造器(Virtual Constructor)模式.工厂方法模式通过定义工厂抽 ...