密度聚类 - DBSCAN算法
参考资料:python机器学习库sklearn——DBSCAN密度聚类, Python实现DBScan
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler # #############################################################################
# 产生样本数据
centers = [[1, 1], [-1, -1], [1, -1]] # 生成聚类中心点
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,random_state=0) # 生成样本数据集 X = StandardScaler().fit_transform(X) # StandardScaler作用:去均值和方差归一化。且是针对每一个特征维度来做的,而不是针对样本。 # 参数设置
aa = []
for i in range(X.shape[0]-1):
for j in range(i+1,X.shape[0]):
aa.append(np.power(X[i]-X[j], 2).sum())
plt.hist(aa, bins=10, density=1, edgecolor ='k', facecolor='g', alpha=0.75) # 调参#############################################################################
t0 = time.time()
optimum_parameter = [0,0,0]
for r in np.linspace(0.1, 0.3, 5):
for min_samples in range(5,12):
db = DBSCAN(eps=r, min_samples=min_samples).fit(X)
score = metrics.silhouette_score(X, db.labels_)
print('(%0.2f, %d) 轮廓系数: %0.3f'%(r, min_samples, score))
if score > optimum_parameter[2]: optimum_parameter=[r, min_samples, score]
print('最佳参数为:eps=%0.2f, min_samples=%d, 轮廓系数=%0.3f'%(optimum_parameter[0], optimum_parameter[1], optimum_parameter[2]))
print('调参耗时:', time.time()-t0) # #############################################################################
# 调用密度聚类 DBSCAN
db = DBSCAN(eps=0.3, min_samples=9).fit(X)
# print(db.labels_) # db.labels_为所有样本的聚类索引,没有聚类索引为-1
# print(db.core_sample_indices_) # 所有核心样本的索引
core_samples_mask = np.zeros_like(db.labels_, dtype=bool) # 设置一个样本个数长度的全false向量
core_samples_mask[db.core_sample_indices_] = True #将核心样本部分设置为true
labels = db.labels_ # 获取聚类个数。(聚类结果中-1表示没有聚类为离散点)
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) # 模型评估
print('估计的聚类个数为: %d' % n_clusters_)
print("同质性: %0.3f" % metrics.homogeneity_score(labels_true, labels)) # 每个群集只包含单个类的成员。
print("完整性: %0.3f" % metrics.completeness_score(labels_true, labels)) # 给定类的所有成员都分配给同一个群集。
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) # 同质性和完整性的调和平均
print("调整兰德指数: %0.3f" % metrics.adjusted_rand_score(labels_true, labels))
print("调整互信息: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels))
print("轮廓系数: %0.3f" % metrics.silhouette_score(X, labels)) # #############################################################################
# Plot result
import matplotlib.pyplot as plt # 使用黑色标注离散点
unique_labels = set(labels)
colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1: # 聚类结果为-1的样本为离散点
# 使用黑色绘制离散点
col = [0, 0, 0, 1] class_member_mask = (labels == k) # 将所有属于该聚类的样本位置置为true xy = X[class_member_mask & core_samples_mask] # 将所有属于该类的核心样本取出,使用大图标绘制
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] # 将所有属于该类的非核心样本取出,使用小图标绘制
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
密度聚类 - DBSCAN算法的更多相关文章
- 31(1).密度聚类---DBSCAN算法
密度聚类density-based clustering假设聚类结构能够通过样本分布的紧密程度确定. 密度聚类算法从样本的密度的角度来考察样本之间的可连接性,并基于可连接样本的不断扩张聚类簇,从而获得 ...
- 聚类——密度聚类DBSCAN
Clustering 聚类 密度聚类——DBSCAN 前面我们已经介绍了两种聚类算法:k-means和谱聚类.今天,我们来介绍一种基于密度的聚类算法——DBSCAN,它是最经典的密度聚类算法,是很多算 ...
- 吴裕雄 python 机器学习——密度聚类DBSCAN模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 密度聚类 DBSCAN
刘建平:DBSCAN密度聚类算法 https://www.cnblogs.com/pinard/p/6208966.html API 的说明: https://www.jianshu.com/p/b0 ...
- 31(2).密度聚类---Mean-Shift算法
Mean-Shift 是基于核密度估计的爬山算法,可以用于聚类.图像分割.跟踪等领域.
- 基于密度聚类的DBSCAN和kmeans算法比较
根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性. 场景 一 假设有如下图的一组数据, 生成数据 ...
- 机器学习(十)—聚类算法(KNN、Kmeans、密度聚类、层次聚类)
聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性, ...
- 机器学习(六)K-means聚类、密度聚类、层次聚类、谱聚类
本文主要简述聚类算法族.聚类算法与前面文章的算法不同,它们属于非监督学习. 1.K-means聚类 记k个簇中心,为\(\mu_{1}\),\(\mu_{2}\),...,\(\mu_{k}\),每个 ...
- DBSCAN密度聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...
随机推荐
- ref的使用
参考地址https://www.cnblogs.com/goloving/p/9404099.html <img src="./01.jpg" ref="img&q ...
- JS---DOM---为元素解除绑定事件
解除绑定事件: 1.解绑事件 对象 .on 事件名字=事件处理函数--->绑定事件. 对象 .on 事件名字 = null . 注意:用什么方式绑定事件,就应该用对应的方式解除绑定事件. //1 ...
- Re-爬楼梯
题目地址 https://dn.jarvisoj.com/challengefiles/CFF_100.rar.dbeee1536c0a5ef5844f42c93602aae5 看看功能,看样子要爬到 ...
- ClickHouse
ClickHouse 是俄罗斯的Yandex于2016年开源的列式存储数据库(DBMS),主要用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告 1 安装前的准备1.1 Cent ...
- 用canvas实现手写签名功能
最近开发网站有一个需求,要求页面上有一块区域,用户能用鼠标在上面写字,并能保存成图片 base64 码放在服务器.这样的需求用 canvas 实现是最好的.需要用到 canvas 的以下几个属性: b ...
- 第04组 Alpha冲刺(3/4)
队名:斗地组 组长博客:地址 作业博客:Alpha冲刺(3/4) 各组员情况 林涛(组长) 过去两天完成了哪些任务: 1.收集各个组员的进度 2.写博客 展示GitHub当日代码/文档签入记录: 接下 ...
- 向github中已创建好的repository提交文件
git init git remote add origin git@github.com:taishan1994/learn_django.git git pull origin master gi ...
- Qt Designer布局预览正常,代码调用时所有控件堆在一起
一.实验环境 1.Windows10x64 2.anaconda4.6.9 + python3.7.1(anaconda集成,不需单独安装) 3.pyinstaller3.5 二.问题描述 1.Qt ...
- DOS命令行操作MySQL常用命令
平时用可视化界面用惯了,如果紧急排查问题,没有安装可视化工具的话,只能通过命令来看了. 以备不时之需,我们要熟悉一下命令行操作MySQL. 打开DOS命令窗口:WIN + R 输入cmd,回车 然后输 ...
- JXL工具包对Excle文件操作
1.简介: XL - JXL(Java Excel API)是一个用来动态读写 Excel 文件的开源框架,利用它可以 在任何支持 Java 的操作系统上动态读写 Excel 文件. 2.开发步骤 1 ...