DIV2 1000pt

题意:给定两个集合A和B,A = {b1*q1i | 0 <= i <= n1-1},B = {b2*q2i | 0 <= i <= n2-1},问将AB两个集合合并之后的集合中元素的个数。(注意,每个集合中每个元素只能有一个)。其中0 <= b1,b2,q1,q2 <= 5*10^8,1 <= n1,n2 <= 10^5。

解法:首先,我们称b = 0或者q = 0或者q = 1的集合为特殊集合,因为特殊集合中最多有两个元素。若至少有一个集合为特殊集合,则此问题容易解决。下面考虑两个集合都不为特殊集合的情况。

   其实,如果不是A和B中的数太大,我们可以将他们每个都求出来,然后放到一个set<long long>里面,返回set.size()即可,时间复杂度O(n1 + n2)。我们需要找到一种表示这些大数的方法。考虑整数的唯一分解式。

   每个整数可以表示成(a1^p1) * (a2^p2) * (a3^p3) *..* (ak^pk)的形式,也就是说,我们只需要统一所有会用到的质数,然后把p1,p2..pk放到一个vector里面,就可以表示每个整数。然后用一个set<vector<long long> >即可统计元素的个数。

tag: math, set

 // BEGIN CUT HERE
/*
* Author: plum rain
* score :
*/
/* */
// END CUT HERE
#line 11 "GeometricProgressions.cpp"
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iomanip>
#include <numeric>
#include <fstream>
#include <cctype>
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <bitset>
#include <list>
#include <string>
#include <utility>
#include <map>
#include <ctime>
#include <stack> using namespace std; #define CLR(x) memset(x, 0, sizeof(x))
#define PB push_back
#define SZ(v) ((int)(v).size())
#define zero(x) (((x)>0?(x):-(x))<eps)
#define out(x) cout<<#x<<":"<<(x)<<endl
#define tst(a) cout<<#a<<endl
#define CINBEQUICKER std::ios::sync_with_stdio(false) typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long int64; const double eps = 1e-;
const double PI = atan(1.0)*;
const int maxint = ;
const int N = ;
const int M = ; int an[][N];
int tmp_sz;
int64 bn[][N]; int inte_dev(int x, int* an, int64* bn)
{
int all = -;
for (int i = ; i*i <= x;){
if (!(x%i)){
an[++all] = i;
bn[all] = ;
}
while (!(x%i)){
++ bn[all];
x /= i;
}
if (i == ) ++ i;
else i += ;
}
++ all;
if (x != ){
an[all] = x;
bn[all++] = ;
}
return all;
} int gao(int64 x, int a)
{
int ret = ;
while (!(x % a)){
x /= a;
++ ret;
}
return ret;
} VI vadd(VI a, VI b)
{
VI ret; ret.clear();
for (int i = ; i < tmp_sz; ++ i)
ret.PB (a[i]+b[i]);
return ret;
} class GeometricProgressions
{
public:
int count(int aa, int b, int n, int c, int d, int m){
int64 a[];
a[] = aa; a[] = b; a[] = c; a[] = d;
if (!a[] || !a[] || a[] == ){
swap (a[], a[]); swap (a[], a[]); swap (n, m);
}
if (!a[] || !a[] || a[] == ){
set<int64> tmp;
tmp.insert(a[]);
if (n > ) tmp.insert(a[]*a[]); int cnt = , sz_tmp = tmp.size();
int64 now = a[];
for (int i = ; i < m; ++ i){
if (tmp.count(now)) ++ cnt;
else tmp.insert(now);
now *= a[];
if (now > 25e16)
return m + sz_tmp - cnt;
}
return tmp.size();
} int64 all[];
for (int i = ; i < ; ++ i)
all[i] = inte_dev(a[i], an[i], bn[i]); set<int> tmp;
VI tt; tt.clear();
for (int i = ; i < ; ++ i)
for (int j = ; j < all[i]; ++ j)
if (!tmp.count(an[i][j])){
tmp.insert (an[i][j]);
tt.PB (an[i][j]);
} vector<int> v[];
for (int i = ; i < ; ++ i)
v[i].clear();
tmp_sz = tmp.size();
for (int i = ; i < ; ++ i)
for (int j = ; j < tmp_sz; ++ j)
v[i].PB (gao(a[i], tt[j])); set<VI > ans;
ans.erase(ans.begin(), ans.end());
VI now = v[];
for (int i = ; i < n; ++ i){
if (!ans.count(now)) ans.insert(now);
now = vadd(now, v[]);
}
now = v[];
for (int i = ; i < m; ++ i){
if (!ans.count(now)) ans.insert(now);
now = vadd(now, v[]);
}
return ans.size();
} // BEGIN CUT HERE
public:
//void run_test(int Case) { if ((Case == -1) || (Case == 0)) test_case_0(); if ((Case == -1) || (Case == 1)) test_case_1(); if ((Case == -1) || (Case == 2)) test_case_2(); if ((Case == -1) || (Case == 3)) test_case_3(); }
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0();}
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arg0 = ; int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; int Arg5 = ; int Arg6 = ; verify_case(, Arg6, count(Arg0, Arg1, Arg2, Arg3, Arg4, Arg5)); }
void test_case_1() { int Arg0 = ; int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; int Arg5 = ; int Arg6 = ; verify_case(, Arg6, count(Arg0, Arg1, Arg2, Arg3, Arg4, Arg5)); }
void test_case_2() { int Arg0 = ; int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; int Arg5 = ; int Arg6 = ; verify_case(, Arg6, count(Arg0, Arg1, Arg2, Arg3, Arg4, Arg5)); }
void test_case_3() { int Arg0 = ; int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; int Arg5 = ; int Arg6 = ; verify_case(, Arg6, count(Arg0, Arg1, Arg2, Arg3, Arg4, Arg5)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
// freopen( "a.out" , "w" , stdout );
GeometricProgressions ___test;
___test.run_test(-);
return ;
}
// END CUT HERE

SRM 500(2-1000pt)的更多相关文章

  1. topcoder srm 500 div1

    problem1 link 如果decisions的大小为0,那么每一轮都是$N$个人.答案为0. 否则,如果答案不为0,那么概率最大的一定是一开始票数最多的人.因为这个人每一轮都在可以留下来的人群中 ...

  2. TC250专场

    SRM 623 DIV2 1000pt 题意:给出一个最多50*50的矩阵,每个单元可能为'.'.'P'.'A','.'代表空地,你每次操作可以把一个P或者A拿到空地上,求一个最大的含有相同字符的矩形 ...

  3. SRM149 - SRM150(少SRM150-DIV1-LV3)

    SRM 149 DIV2 1000pt 题意: 对于n个人,第i人有pi的钱.将他们分成不超过四个组,每组统一交费x,对每个人,若他拥有的钱超过x则交费,否则不交费.问最多能使这些人交多少钱. 1&l ...

  4. Topcoder 好题推荐

    SRM SRM147 DIV1 1000pt DP SRM148 DIV1 1100pt 递归 SRM149 DIV1 1000pt math SRM150 DIV1 500pt DP SRM469 ...

  5. SRM 618 DIV1 500

    非常棒的组合问题,看了好一会,无想法.... 有很多做法,我发现不考虑顺序的最好理解,也最好写. 结果一定是两种形式 A....A   dp[n-1] A...A...A sgma(dp[j]*dp[ ...

  6. SRM 615 DIV1 500

    TC 都615了...时间过的真快啊. 第一次做出500分,心情还是很激动的,虽然看了很久的题解,TC官网上的题解,很详细,但是英语的...我搜了搜,发现一份日语的...好吧,我还是看看英语的吧... ...

  7. topcoder srm 628 div2 250 500

    做了一道题,对了,但是还是掉分了. 第二道题也做了,但是没有交上,不知道对错. 后来交上以后发现少判断了一个条件,改过之后就对了. 第一道题爆搜的,有点麻烦了,其实几行代码就行. 250贴代码: #i ...

  8. SRM 719 Div 1 250 500

    250: 题目大意: 在一个N行无限大的网格图里,每经过一个格子都要付出一定的代价.同一行的每个格子代价相同. 给出起点和终点,求从起点到终点的付出的最少代价. 思路: 最优方案肯定是从起点沿竖直方向 ...

  9. TopCoder SRM 639 Div.2 500 AliceGameEasy

    题意: 一个游戏有n轮,有A和B比赛,谁在第 i 轮得胜,就获得 i 分,给出x,y,问A得x分,B得y分有没有可能,如果有,输出A最少赢的盘数 解题思路: 首先判断n(n+1)/2 = (x+y)是 ...

随机推荐

  1. LaTeX 中插入数学公式

    一.常用的数学符号 1.小写希腊字母 \alpha \nu \beta \xi \gamma o \delta \pi \epsilon \rho \zeta \sigma \eta \tau \th ...

  2. UIDatePikcer的基本用法

    - (void)viewDidLoad { [super viewDidLoad]; _datePicker = [[UIDatePicker alloc] initWithFrame:CGRectM ...

  3. iOS目录结构

    默认情况下,每个沙盒含有3个文件夹:Documents, Library 和 tmp.因为应用的沙盒机制,应用只能在几个目录下读写文件 Documents:苹果建议将程序中建立的或在程序中浏览到的文件 ...

  4. javascript基础学习(四)

    javascript之流程控制语句 学习要点: 表达式语句含义 选择语句:if.if...else.switch 循环语句:while.do...while.for.for...in 跳转语句:bre ...

  5. HttpClient的get+post请求使用

    啥都不说,先上代码 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReade ...

  6. Tomcat设置最佳线程数总结

    最佳线程数: 性能压测的情况下,起初随着用户数的增加,QPS会上升,当到了一定的阀值之后,用户数量增加QPS并不会增加,或者增加不明显,同时请求的响应时间却大幅增加.这个阀值我们认为是最佳线程数. 为 ...

  7. 命令模式(Command)

    1.本质: 封装请求 2.定义: 把一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化,对请求排队或记录请求日志,以及支持可撤销的操作 3.核心: 原本“行为请求者”和“行为执行者”是紧紧 ...

  8. 『重构--改善既有代码的设计』读书笔记----Introduce Local Extension

    同Introduce Foreign Method一样,很多时候你不能修改编辑原始类,你需要为这些服务类增加一些额外的函数,但你没有这个权限或者入口.如果你只需要一个或者两个外加函数那么你可以放心的使 ...

  9. 15_RHEL7挂载NTFS分区

    1.下载ntfs-3g wget https://tuxera.com/opensource/ntfs-3g_ntfsprogs-2015.3.14.tgz 2.安装 tar -zxvf ntfs-3 ...

  10. 在vs code中使用ftp-sync插件实现客户端与服务器端代码的同步

    在vs code中使用ftp-sync插件实现客户端与服务器端代码的同步 下载安装 vscode-ftp-sync 插件. 安装方法1. Ctrl+Shift+P 输入 ext install [插件 ...