题目传送:http://poj.org/problem?id=2409

Description

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.

A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

Input

Every line of the input file defines a test case and contains two integers: the number of available colors c followed by the length of the bracelets s. Input is terminated by c=s=0. Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs<=32, i.e. their product does not exceed 32.

Output

For each test case output on a single line the number of unique bracelets. The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

Sample Input

1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0

Sample Output

1
2
3
5
8
13
21

启发博客:http://blog.csdn.net/sr_19930829/article/details/38108871

polya定理看的我好累。。总算是在理解的基础上敲出一道裸题

关键就是在循环节个数和长度以及置换群个数的理解上

1.旋转。

环每次顺时针如果旋转i格,那么每循环lcm(n,i)个可以回到原来的状态。

每次旋转i个,所以循环节长度为lcm(n,i)/i。

由此推出循环节个数为n/(lcm(n,i)/i)即gcd(n,i)。

由polya定理可得染色方案为 ∑c^gcd(n,i) 其中 i=1,2,3,4,....n,置换群个数有n个

2.翻转。

这里得考虑两种情况,循环节长度为3,即珠子本身和翻转对应的那一颗。置换群个数有n个。

当n为奇数时,共有n个循环节个数为(n/2+1)的循环群,染色方案为 n*c^(n/2+1)

当n为偶数时,共有n个循环群,其中有n/2个的循环节个数为(n/2 +1), 有n/2个的循环节个数为(n/2)。 染色方案分别为 (n/2)*c^(n/2+1)以及(n/2)*c^(n/2)。

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std; long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long quick_mod(long long a,long long b)//快速幂,复杂度log2n
{
long long ans=;
while(b)
{
if(b&)
{
ans=(ans*a);
b--;
}
b/=;
a=a*a;
}
return ans;
} int main()
{
int c,s;
long long res;
while(~scanf("%d%d",&c,&s)&&(c+s))
{
res=;
//翻转
for(int i=;i<=s;i++)
res+=quick_mod(c,gcd(s,i));
//旋转
if(s%!=)
res+=s*quick_mod(c,s/+);
else
res+=s/*quick_mod(c,s/+)+s/*quick_mod(c,s/);
res/=*s;
printf("%lld\n",res);
}
return ;
}

POJ 2409 Let it Bead(polya裸题)的更多相关文章

  1. POJ 2409 Let it Bead (Polya定理)

    题意 用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数. 思路 Polya定理 X是对象集合{1, 2, --, n}, 设G是X上的置换群,用M种颜色染N种对象,则不 ...

  2. poj 2409 Let it Bead Polya计数

    旋转能够分为n种置换,相应的循环个数各自是gcd(n,i),个i=0时不动,有n个 翻转分为奇偶讨论,奇数时有n种置换,每种有n/2+1个 偶数时有n种置换,一半是n/2+1个,一半是n/2个 啃论文 ...

  3. [ACM] POJ 2409 Let it Bead (Polya计数)

    参考:https://blog.csdn.net/sr_19930829/article/details/38108871 #include <iostream> #include < ...

  4. poj 1286 Necklace of Beads &amp; poj 2409 Let it Bead(初涉polya定理)

    http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...

  5. bzoj 1004 Cards & poj 2409 Let it Bead —— 置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oie ...

  6. POJ 3624 Charm Bracelet(01背包裸题)

    Charm Bracelet Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 38909   Accepted: 16862 ...

  7. bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...

  8. poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>

    链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...

  9. POJ 2409 Let it Bead ——Burnside引理

    [题目分析] 裸题直接做. 一个长度为n,颜色为m的环,本质不同的染色方案是多少. 数据范围比较小,直接做就好了. [代码] #include <cstdio> #include < ...

随机推荐

  1. 【其他】【服务器】【2】把jar包做成服务,在Service中管理

    三个文件:service_install.xml,service_install.exe,install-service.bat: 和xx.jar放在同一个目录下 service_install.xm ...

  2. Sorting Algorithms

    Merge sort by using recursive strategy, i.e. divide and conquer. def merge(left,right): result = [] ...

  3. 一、Redis的学习

    一.Redis的简介 Redis是一个高性能的key-value数据库,有点像一个hashmap. Redis与其他非关系型数据库做缓存有下面几个特点: 1.Redis支持数据的持久化,可以将内存中的 ...

  4. 33 个 2017 年必须了解的 iOS 开源库

    本文翻译自Medium,原作者为Pawe? Bia?ecki 照片版权:(Unsplash/Markus Pe) 你好,iOS 开发者们!我的名字叫 Pawe?,我是一个独立 iOS 开发者,并且是  ...

  5. ifcfg-eth配置详解(CentOS6)

    1.基本配置形式 1.1 动态IP基本配置 DEVICE=eth0 TYPE=Ethernet ONBOOT=yes BOOTPROTO=dhcp DEVICE--网卡名,要与ifcfg-ethx中的 ...

  6. Qt中QSlider的样式表设置

    转自: https://blog.csdn.net/tax10240809163com/article/details/50899023 //首先是设置主体QSlider{border-color: ...

  7. 把旧系统迁移到.Net Core 2.0 日记(8) - EASYUI datagrid+ Dapper+ 导出Excel

    迁移也没太大变化,有一个, 之前的Request.QueryString 是返回NameValueCollection, 现在则是返回整个字符串. 你要改成Request.Query[“key”] 直 ...

  8. git上传新建项目

    新建立本地项目,现在需要上传到git.对上传过程归纳如下: 一 在gitlab中新建项目:如下图所示: 二,新建后获取url地址,在本地打开gitbash,根据url把git上的项目clone到本地: ...

  9. laravel中db获取某个数据的具体字段值:

    $helpfriend = DB::connection('luckyrecord')->table($luckyrecord)->where('id', $luckyrecordid)- ...

  10. 用Python读取文件

    1. 读取TXT文件 CODE CUR PRV. CLOSING RATE HIGH LOW CLOSING SHARES TRADED TURNOVER ($) 代號 NAME OF STOCK 股 ...