POJ 2409 Let it Bead(polya裸题)
题目传送:http://poj.org/problem?id=2409
Description
A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.
Input
Output

Sample Input
1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0
Sample Output
1
2
3
5
8
13
21
启发博客:http://blog.csdn.net/sr_19930829/article/details/38108871
polya定理看的我好累。。总算是在理解的基础上敲出一道裸题
关键就是在循环节个数和长度以及置换群个数的理解上
1.旋转。
环每次顺时针如果旋转i格,那么每循环lcm(n,i)个可以回到原来的状态。
每次旋转i个,所以循环节长度为lcm(n,i)/i。
由此推出循环节个数为n/(lcm(n,i)/i)即gcd(n,i)。
由polya定理可得染色方案为 ∑c^gcd(n,i) 其中 i=1,2,3,4,....n,置换群个数有n个
2.翻转。
这里得考虑两种情况,循环节长度为3,即珠子本身和翻转对应的那一颗。置换群个数有n个。
当n为奇数时,共有n个循环节个数为(n/2+1)的循环群,染色方案为 n*c^(n/2+1)
当n为偶数时,共有n个循环群,其中有n/2个的循环节个数为(n/2 +1), 有n/2个的循环节个数为(n/2)。 染色方案分别为 (n/2)*c^(n/2+1)以及(n/2)*c^(n/2)。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std; long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long quick_mod(long long a,long long b)//快速幂,复杂度log2n
{
long long ans=;
while(b)
{
if(b&)
{
ans=(ans*a);
b--;
}
b/=;
a=a*a;
}
return ans;
} int main()
{
int c,s;
long long res;
while(~scanf("%d%d",&c,&s)&&(c+s))
{
res=;
//翻转
for(int i=;i<=s;i++)
res+=quick_mod(c,gcd(s,i));
//旋转
if(s%!=)
res+=s*quick_mod(c,s/+);
else
res+=s/*quick_mod(c,s/+)+s/*quick_mod(c,s/);
res/=*s;
printf("%lld\n",res);
}
return ;
}
POJ 2409 Let it Bead(polya裸题)的更多相关文章
- POJ 2409 Let it Bead (Polya定理)
题意 用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数. 思路 Polya定理 X是对象集合{1, 2, --, n}, 设G是X上的置换群,用M种颜色染N种对象,则不 ...
- poj 2409 Let it Bead Polya计数
旋转能够分为n种置换,相应的循环个数各自是gcd(n,i),个i=0时不动,有n个 翻转分为奇偶讨论,奇数时有n种置换,每种有n/2+1个 偶数时有n种置换,一半是n/2+1个,一半是n/2个 啃论文 ...
- [ACM] POJ 2409 Let it Bead (Polya计数)
参考:https://blog.csdn.net/sr_19930829/article/details/38108871 #include <iostream> #include < ...
- poj 1286 Necklace of Beads & poj 2409 Let it Bead(初涉polya定理)
http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...
- bzoj 1004 Cards & poj 2409 Let it Bead —— 置换群
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oie ...
- POJ 3624 Charm Bracelet(01背包裸题)
Charm Bracelet Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 38909 Accepted: 16862 ...
- bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...
- poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>
链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...
- POJ 2409 Let it Bead ——Burnside引理
[题目分析] 裸题直接做. 一个长度为n,颜色为m的环,本质不同的染色方案是多少. 数据范围比较小,直接做就好了. [代码] #include <cstdio> #include < ...
随机推荐
- java进行url编码和解码
public static String getURLEncoderString(String str) { String result = ""; if (null == str ...
- Yii2框架RESTful API教程
前不久做一个项目,是用Yii2框架写一套RESTful风格的API,就去查了下<Yii 2.0 权威指南 >,发现上面写得比较简略.所以就在这里写一篇教程贴,希望帮助刚接触Yii2框架RE ...
- Div和Span
Div ——层级元素,这一行不允许有其他元素(用来布局) Span ——用来修饰文本
- Hibernate 加载策略得总结
Hibernate 加载策略得总结 加载策略(优化查询): 策略种类: 延迟加载: 等到使用的时候才会加载数据. 立即加载: 不管使用不使用,都会立刻将数据加载. 策略的应用: 类级别的加载策略. 关 ...
- 图解ActiveMQ virtual topic
http://activemq.apache.org/virtual-destinations.html 普通的 topic 是发布/订阅模式:消息会被广播发送给所有的订阅者,订阅者拿到的是全部消息, ...
- python字符串内建函数
- summer_19th,Nov 2018
一.内存管理: Cpython解释器的垃圾回收机制 一个没有绑定任何变量名的值被称为垃圾,即该值的引用计数为零. 二.变量值的三个特点: id: 内存地址 type: 数据类型 值 总结:id相同,值 ...
- day7-python打开文件方式
文件操作 对文件操作流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 基本操作 import codecs #主要用来解决乱码问题 f = codecs.open('1. ...
- c#7的新特性
1.out关键字 //可以直接声明使用 ",out int number); 2.元组 //有点类似匿名对象的样子 //用小括号包含变量,可以当做返回值,可以当做变量赋值等 //1.当做函数 ...
- Innodb引擎简介
一.锁 二.什么情况出现阻塞 1.频繁更改的表,出现了慢查询 2.频繁访问的表,出现了备份等(表级锁) 三.查看运行情况 show engine innodb status; 四.关键参数 innod ...