前言

学习了Great_Influence的递推实现,我给大家说一下多项式求逆严格的边界条件,因为我发现改动一些很小的边界条件都会使程序出错。怎么办,背代码吗?背代码是不可能,这辈子都不会背代码的。理解了边界条件就不会出错了。

分析

理论基础
\[A \times B \equiv 1 \qquad (\mod{x^n})\]
\[A \times B' \equiv 1 \qquad (\mod{x^{\frac{n}{2}}})\]
\[A \times (B-B') \equiv 0 \qquad (\mod{x^{\frac{n}{2}}})\]
\[B-B' \equiv 0 \qquad(\mod{x^{\frac{n}{2}}})\]
\[(B-B')^2 \equiv 0 \qquad(\mod{x^n})\]
\[B^2-2BB'+B'^2 \equiv 0 \qquad (\mod{x^n})\]
\[A(B^2-2BB'+B'^2) \equiv 0 \qquad (\mod{x^n})\]
\[B-2B'+AB'^2 \equiv 0 \qquad (\mod{x^n})\]
\[B \equiv 2B'-AB'^2 \qquad (\mod{x^n})\]

根据这个式子就可以倍增求多项式逆元了。但是如何倍增呢?或许你已兴冲冲地打出了NTT的板子,然后感觉无从下手。

代码

前置是NTT

inline void FFT(int*t,int lim,int type)
{
    for(rg int i=0;i<lim;++i)
        if(i<rev[i])
            swap(t[i],t[rev[i]]);
    for(rg int i=1;i<lim;i<<=1)
    {
        int gn=qpow(g,(mod-1)/(i<<1));
        if(type==-1)
            gn=qpow(gn,mod-2);
        for(rg int j=0;j<lim;j+=(i<<1))
        {
            int gi=1;
            for(rg int k=0;k<i;++k,gi=(ll)gi*gn%mod)
            {
                int x=t[j+k],y=(ll)gi*t[j+i+k]%mod;
                t[j+k]=module(x,y);
                t[j+i+k]=module(x,mod-y);
            }
        }
    }
    if(type==-1)
    {
        int inv=qpow(lim,mod-2);
        for(rg int i=0;i<lim;++i)
            t[i]=(ll)t[i]*inv%mod;
    }
}
  • 为什么i从1开始小于lim?因为i是下层长度,这也是qpow里面i要乘2的原因。
  • 为什么j从0开始小于lim?因为j是当前层的起始位置,而数组是base 0的。
  • 为什么k从0开始小于i?因为k是当前合并区间的下标,为方便计算从0开始小于i。

首先要封装多项式柯西乘法(卷积),减少代码量以及出错的可能性。

int X[MAXN],Y[MAXN];

inline void mul(int*x,int*y,int lim)
{
    memset(X,0,sizeof(X));
    memset(Y,0,sizeof(Y));
    for(rg int i=0;i<(lim>>1);++i) // edit 2 lim>>1
        X[i]=x[i],Y[i]=y[i];
    FFT(X,lim,1);
    FFT(Y,lim,1);
    for(rg int i=0;i<lim;++i)
        X[i]=(ll)X[i]*Y[i]%mod;
    FFT(X,lim,-1);
    for(rg int i=0;i<lim;++i)
        x[i]=X[i];
}
  • 为什么要把数组复制到XY上?因为避免自乘出错,自己乘自己会导致NTT了两次。

  • 为什么第一层for循环边界为i<lim/2?因为乘出来度数是lim,乘之前度数是lim/2.

然后实现三个辅助函数,分别是 快速幂、 快速模加 和 计算rev 。

inline int qpow(int x,int k)
{
    int ans=1;
    while(k)
    {
        if(k&1)
            ans=(ll)ans*x%mod;
        x=(ll)x*x%mod,k>>=1;
    }
    return ans;
}

inline int module(int x,int y)
{
    x+=y;
    if(x>=mod)
        x-=mod;
    return x;
}

int rev[MAXN];

inline void calrev(int lim,int l)
{
    for(rg int i=1;i<lim;++i)
        rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
}
  • 这三个东西的作用不用细说,主要是计算rev数组下表i可以从1开始的原因是rev[0]恒等于0.

最后就是主菜求逆元了,可以用滚动数组减少空间

int a[MAXN],b[2][MAXN];

int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    read(n);
    --n;
    for(rg int i=0;i<=n;++i)
        read(a[i]);
    int cur=0;
    b[cur][0]=qpow(a[0],mod-2);
    int bas=1,lim=2,len=1; // bas:下层长度(当前计算的) lim:上层长度(计算出来的) len:log_2(lim)
    calrev(lim,len);
    while(bas<=(n<<1)) // edit 1 <=
    {
        cur^=1;
        memset(b[cur],0,sizeof(b[cur]));
        for(int i=0;i<bas;++i)
            b[cur][i]=module(b[cur^1][i]<<1,0);
        mul(b[cur^1],b[cur^1],lim);
        mul(b[cur^1],a,lim);
        for(int i=0;i<bas;++i)
            b[cur][i]=module(b[cur][i],mod-b[cur^1][i]);
        bas<<=1,lim<<=1,++len;
        if(bas<=(n<<1))
            calrev(lim,len);
    }
    for(rg int i=0;i<=n;++i)
        printf("%d ",b[cur][i]);
//  fclose(stdin);
//  fclose(stdout);
    return 0;
}
  • 由于这道题就是裸的求逆元,所以我就没封装求逆。其实封装也很简单,加个void inv(int*a,int**b,int&cur,int n)就行了cur要引用是因为需要知道算出来的结果是b数组的哪个
  • 为什么第一个for循环边界是bas,第二个是lim?因为长度倍增了。另外mul里面也得用lim也是这个原因。
  • 为什么bas<=2*n?因为...当前层的长度得覆盖、大于n...吗?其实不是。

为什么bas<=2*n?

考虑我们的数组范围。长度看似倍增了,实则不然。数组下标为0~bas-1,代表\(\sum_{i=0}^{bas-1}a_ix^i\)的各项系数,然而自乘之后最高项次数应变为2(bas-1)而不是程序里面认为的2bas-1,所以我们求出来的多项式其实有虚假成分。怎么处理?程序里面是不好更改的,没必要为此增加代码量和出错性。那么求大一点就好了,比如求到2*n,这样虚假成分不会影响到最终答案。

LG4238 【【模板】多项式求逆】的更多相关文章

  1. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  2. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  3. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  4. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  5. luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

    手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...

  6. P4238 【模板】多项式求逆

    思路 多项式求逆就是对于一个多项式\(A(x)\),求一个多项式\(B(x)\),使得\(A(x)B(x) \equiv 1 \ (mod x^n)\) 假设现在多项式只有一项,显然\(B(x)\)的 ...

  7. FFT模板 生成函数 原根 多项式求逆 多项式开根

    FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...

  8. [洛谷P4238]【模板】多项式求逆

    题目大意:多项式求逆 题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \d ...

  9. 洛谷P4721 【模板】分治 FFT(生成函数+多项式求逆)

    传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x) ...

随机推荐

  1. java⑥

    import java.util.Scanner; /** * 所有在java.lang包下面的所有类 不需要显示的引入包! * java.util.Scanner : 想获取用户的输入 必须引入相关 ...

  2. vue-7-表单

    示例: <input v-model="message" placeholder="edit me"> <p>Message is: { ...

  3. springMVC操作cookie和session

    cookie相关说明: 1.cookie由服务器端创建,然后添加到HttpServletResponse中发送给客户端(浏览器). 2.可以添加多个cookie键值对. 3.cookie由键值名和键值 ...

  4. Java 如何抛出异常、自定义异常

    Java错误与异常的基本概念: 1.java中异常均继承自Throwable,其有两个重要的直接子类error与exception. 2.java错误error,大部分是由虚拟机爆出来的错误,是程序无 ...

  5. java开发简易计算器

    所选用的编译工具为NetBeans /* * To change this license header, choose License Headers in Project Properties. ...

  6. 十二. Python基础(12)--生成器

    十二. Python基础(12)--生成器 1 ● 可迭代对象(iterable) An object capable of returning its members one at a time. ...

  7. shell脚本总结

    1.变量 A:  定义变量A=1,只会对自己所在的shell进程有效 B: 定义变量export B=1,会对自己所在的shell进程及其子进程生效 C: 在script.sh脚本中定义的变量,在当前 ...

  8. IDEA中安装ibatis插件

    若想在IDEA中使数据库的相关配置能够快速链接即Ctrl+单击跳转,则安装插件 效果如图,跳转成功

  9. Docker(4):Dockerfile命令一览

    1.FROM 指定基础镜像 FROM 指令用于指定其后构建新镜像所使用的基础镜像.FROM 指令必是 Dockerfile 文件中的首条命令,启动构建流程后,Docker 将会基于该镜像构建新镜像,F ...

  10. L316 波音737Max 危机

    Boeing Scrambles To Restore Faith In Its 737 MAX Airplane After Crashes In the wake of two deadly cr ...