sklearn中的回归器性能评估方法
- explained_variance_score()
- mean_absolute_error()
- mean_squared_error()
- r2_score()
以上四个函数的相同点:
- 这些函数都有一个参数“multioutput”,用来指定在多目标回归问题中,若干单个目标变量的损失或得分以什么样的方式被平均起来
- 它的默认值是“uniform_average”,他就是将所有预测目标值的损失以等权重的方式平均起来
- 如果你传入了一个shape为(n_oupputs,)的ndarray,那么数组内的数将被视为是对每个输出预测损失(或得分)的加权值,所以最终的损失就是按照你锁指定的加权方式来计算的
- 如果multioutput是“raw_values”,那么所有的回归目标的预测损失或预测得分都会被单独返回一个shape是(n_output)的数组中
explained_variance_score
#explained_variance_score
from sklearn.metrics import explained_variance_score
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(explained_variance_score(y_true,y_pred))
y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(explained_variance_score(y_true,y_pred,multioutput="raw_values"))
print(explained_variance_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.957173447537
#[ 0.96774194 1. ]
#0.990322580645
mean_absolute_error
#mean_absolute_error
from sklearn.metrics import mean_absolute_error
y_true=[3,0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(mean_absolute_error(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(mean_absolute_error(y_true,y_pred))
print(mean_absolute_error(y_true,y_pred,multioutput="raw_values"))
print(mean_absolute_error(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.5
#0.75
#[ 0.5 1. ]
#0.85
mean_squared_error
#mean_squared_error
from sklearn.metrics import mean_squared_error
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(mean_squared_error(y_true,y_pred))
y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(mean_squared_error(y_true,y_pred)) #结果
#0.375
#0.708333333333
median_absolute_error
#median_absolute_error
from sklearn.metrics import median_absolute_error
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(median_absolute_error(y_true,y_pred)) #结果
#0.5
r2_score
#r2_score
from sklearn.metrics import r2_score
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(r2_score(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(r2_score(y_true,y_pred,multioutput="variance_weighted")) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(r2_score(y_true,y_pred,multioutput="uniform_average"))
print(r2_score(y_true,y_pred,multioutput="raw_values"))
print(r2_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.948608137045
#0.938256658596
#0.936800526662
#[ 0.96543779 0.90816327]
#0.92534562212
sklearn中的回归器性能评估方法的更多相关文章
- sklearn中的回归器性能评估方法(转)
explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一 ...
- sklearn中回归器性能评估方法
explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一 ...
- Sklearn中的回归和分类算法
一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完 ...
- sklearn中模型评估和预测
一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.c ...
- sklearn调用逻辑回归算法
1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...
- sklearn中各种分类器回归器都适用于什么样的数据呢?
作者:匿名用户链接:https://www.zhihu.com/question/52992079/answer/156294774来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...
- 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...
- (数据科学学习手札25)sklearn中的特征选择相关功能
一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常 ...
- ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法
ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法 (ITU‑R 102/6号研究课题) (2007年) 范围 数字广播系统允许提供多媒体和数据广播应用,包括视频.音频.静态图像. ...
随机推荐
- JSON序列——主从表查询
JSON序列——主从表查询 客户端代码: procedure TForm1.Button4Click(Sender: TObject); // 主从表 查询 begin var url: TynUrl ...
- RxJava2 源码解析(二)
概述 承接上一篇RxJava2 源码解析(一),本系列我们的目的: 知道源头(Observable)是如何将数据发送出去的. 知道终点(Observer)是如何接收到数据的. 何时将源头和 ...
- linux设置预留端口号,防止监听端口被占用 ip_local_reserved_ports
1. 背景 linux服务器启动时,会对指定的端口进行监听bind,如果同一个机器上这个端口已经被使用,则监听失败,程序无法启动. linux客户端连接服务器accept时,系统会分配本地临时端口用于 ...
- Android批量图片加载经典系列——使用LruCache、AsyncTask缓存并异步加载图片
一.问题描述 使用LruCache.AsyncTask实现批量图片的加载并达到下列技术要求 1.从缓存中读取图片,若不在缓存中,则开启异步线程(AsyncTask)加载图片,并放入缓存中 2.及时移除 ...
- Android GUI之Activity、Window、View
相信大家在接触Android之初就已经知道了Activity中的setContentView方法的作用了,很明显此方法是用于为Activity填充相应的布局的.那么,Activity是如何将填充的布局 ...
- Android学习笔记(11):线性布局LinearLayout
线性布局LinearLayout是指在横向或是竖向一个接一个地排列.当排列的组件超出屏幕后,超出的组件将不会再显示出来. LinearLayout支持的XML属性和相应方法如表所看到的: Attrib ...
- DNS缓存中毒是怎么回事?
近来,网络上出现互联网漏洞——DNS缓存漏洞,此漏洞直指我们应用中互联网脆弱的安全系统,而安全性差的根源在于设计缺陷.利用该漏洞轻则可以让用户无法打开网页,重则是网络钓鱼和金融诈骗,给受害者造成巨大损 ...
- awstats日志分析
nginx日志格式设定,去掉如下行#号 #vim /usr/local/nginx/conf/nginx.conf log_format access '$remote_addr -$remote_u ...
- windows多线程同步--事件
推荐参考博客:秒杀多线程第六篇 经典线程同步 事件Event 事件是内核对象,多用于线程间通信,可以跨进程同步 事件主要用到三个函数:CreateEvent,OpenEvent,SetEvent, ...
- CDN介绍
作者:视界云链接:https://www.zhihu.com/question/37353035/answer/175217812来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...