• explained_variance_score()
  • mean_absolute_error()
  • mean_squared_error()
  • r2_score()

以上四个函数的相同点:

  • 这些函数都有一个参数“multioutput”,用来指定在多目标回归问题中,若干单个目标变量的损失或得分以什么样的方式被平均起来
  • 它的默认值是“uniform_average”,他就是将所有预测目标值的损失以等权重的方式平均起来
  • 如果你传入了一个shape为(n_oupputs,)的ndarray,那么数组内的数将被视为是对每个输出预测损失(或得分)的加权值,所以最终的损失就是按照你锁指定的加权方式来计算的
  • 如果multioutput是“raw_values”,那么所有的回归目标的预测损失或预测得分都会被单独返回一个shape是(n_output)的数组中

explained_variance_score

#explained_variance_score
from sklearn.metrics import explained_variance_score
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(explained_variance_score(y_true,y_pred))
y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(explained_variance_score(y_true,y_pred,multioutput="raw_values"))
print(explained_variance_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.957173447537
#[ 0.96774194 1. ]
#0.990322580645

mean_absolute_error

#mean_absolute_error
from sklearn.metrics import mean_absolute_error
y_true=[3,0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(mean_absolute_error(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(mean_absolute_error(y_true,y_pred))
print(mean_absolute_error(y_true,y_pred,multioutput="raw_values"))
print(mean_absolute_error(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.5
#0.75
#[ 0.5 1. ]
#0.85

mean_squared_error

#mean_squared_error
from sklearn.metrics import mean_squared_error
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(mean_squared_error(y_true,y_pred))
y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(mean_squared_error(y_true,y_pred)) #结果
#0.375
#0.708333333333

median_absolute_error

#median_absolute_error
from sklearn.metrics import median_absolute_error
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(median_absolute_error(y_true,y_pred)) #结果
#0.5

r2_score

#r2_score
from sklearn.metrics import r2_score
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(r2_score(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(r2_score(y_true,y_pred,multioutput="variance_weighted")) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(r2_score(y_true,y_pred,multioutput="uniform_average"))
print(r2_score(y_true,y_pred,multioutput="raw_values"))
print(r2_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.948608137045
#0.938256658596
#0.936800526662
#[ 0.96543779 0.90816327]
#0.92534562212

sklearn中的回归器性能评估方法的更多相关文章

  1. sklearn中的回归器性能评估方法(转)

    explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一 ...

  2. sklearn中回归器性能评估方法

    explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一 ...

  3. Sklearn中的回归和分类算法

    一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完 ...

  4. sklearn中模型评估和预测

    一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.c ...

  5. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  6. sklearn中各种分类器回归器都适用于什么样的数据呢?

    作者:匿名用户链接:https://www.zhihu.com/question/52992079/answer/156294774来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  7. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

  8. (数据科学学习手札25)sklearn中的特征选择相关功能

    一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常 ...

  9. ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法

    ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法 (ITU‑R 102/6号研究课题) (2007年) 范围 数字广播系统允许提供多媒体和数据广播应用,包括视频.音频.静态图像. ...

随机推荐

  1. 让.Net程序支持命令行启动

    很多时候,我们需要让程序支持命令行启动,这个时候则需要一个命令行解析器,由于.Net BCL并没有内置命令行解析库,因此需要我们自己实现一个.对于简单的参数来说,自己写一个字符串比较函数来分析args ...

  2. WindowManager$BadTokenException: Unable to add window permission denied for this window type

    10-11 11:47:27.472: E/AndroidRuntime(12804): java.lang.RuntimeException: Unable to start activity Co ...

  3. Unity3D MonoBehaviour的生命周期(lifecycle)

    官方的事件函数的执行顺序中有详解(Link:Execution Order of Event Functions) (图片来源:http://whatiseeinit.blogspot.com/201 ...

  4. conda虚拟环境

    https://blog.csdn.net/lyy14011305/article/details/59500819 1.首先在所在系统中安装Anaconda.可以打开命令行输入conda -V检验是 ...

  5. 推荐10本C#编程的最佳书籍

    C#和.NET非常受全球开发人员的追捧和热爱.书籍是人类进步的阶梯.想要学习C# ?这里有10本学习C#编程的最好书籍在等着你哦. 1.<C# 5.0 in a Nutshell>:权威的 ...

  6. Android 如何保持屏幕常亮

    确认应用需要像游戏或者视频应用一样保持屏幕处于开启状态.最好的方式是在Activity中使用FLAG_KEEP_SCREEN_ON.(and only in an activity, never in ...

  7. SQL Server为字段添加默认值

    SQL Server为字段添加默认值 if not exists ( select * from sys.columns as c join sys.objects as o on c.default ...

  8. mysql数据库分区功能及实例详解

    分区听起来怎么感觉是硬盘呀,对没错除了硬盘可以分区数据库现在也支持分区了,分区可以解决大数据量的处理问题,下面一起来看一个mysql数据库分区功能及实例详解   一,什么是数据库分区 前段时间写过一篇 ...

  9. Boinx FotoMagico for Mac(电子相册制作工具)破解版安装

    1.软件简介    FotoMagico 是 macOS 系统上一款非常好用的电子视频相册制作工具,FotoMagico 被誉为 Mac 上的「会声会影」,我们可以使用这款软件快速的制作出精美的音乐视 ...

  10. C#中回滚TransactionScope的使用方法和原理

    TransactionScope只要一个操作失败,它会自动回滚,Complete表示事务完成   实事上,一个错误的理解就是Complete()方法是提交事务的,这是错误的,事实上,它的作用的表示本事 ...