• explained_variance_score()
  • mean_absolute_error()
  • mean_squared_error()
  • r2_score()

以上四个函数的相同点:

  • 这些函数都有一个参数“multioutput”,用来指定在多目标回归问题中,若干单个目标变量的损失或得分以什么样的方式被平均起来
  • 它的默认值是“uniform_average”,他就是将所有预测目标值的损失以等权重的方式平均起来
  • 如果你传入了一个shape为(n_oupputs,)的ndarray,那么数组内的数将被视为是对每个输出预测损失(或得分)的加权值,所以最终的损失就是按照你锁指定的加权方式来计算的
  • 如果multioutput是“raw_values”,那么所有的回归目标的预测损失或预测得分都会被单独返回一个shape是(n_output)的数组中

explained_variance_score

#explained_variance_score
from sklearn.metrics import explained_variance_score
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(explained_variance_score(y_true,y_pred))
y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(explained_variance_score(y_true,y_pred,multioutput="raw_values"))
print(explained_variance_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.957173447537
#[ 0.96774194 1. ]
#0.990322580645

mean_absolute_error

#mean_absolute_error
from sklearn.metrics import mean_absolute_error
y_true=[3,0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(mean_absolute_error(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(mean_absolute_error(y_true,y_pred))
print(mean_absolute_error(y_true,y_pred,multioutput="raw_values"))
print(mean_absolute_error(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.5
#0.75
#[ 0.5 1. ]
#0.85

mean_squared_error

#mean_squared_error
from sklearn.metrics import mean_squared_error
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(mean_squared_error(y_true,y_pred))
y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(mean_squared_error(y_true,y_pred)) #结果
#0.375
#0.708333333333

median_absolute_error

#median_absolute_error
from sklearn.metrics import median_absolute_error
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(median_absolute_error(y_true,y_pred)) #结果
#0.5

r2_score

#r2_score
from sklearn.metrics import r2_score
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(r2_score(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(r2_score(y_true,y_pred,multioutput="variance_weighted")) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(r2_score(y_true,y_pred,multioutput="uniform_average"))
print(r2_score(y_true,y_pred,multioutput="raw_values"))
print(r2_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.948608137045
#0.938256658596
#0.936800526662
#[ 0.96543779 0.90816327]
#0.92534562212

sklearn中的回归器性能评估方法的更多相关文章

  1. sklearn中的回归器性能评估方法(转)

    explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一 ...

  2. sklearn中回归器性能评估方法

    explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一 ...

  3. Sklearn中的回归和分类算法

    一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完 ...

  4. sklearn中模型评估和预测

    一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.c ...

  5. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  6. sklearn中各种分类器回归器都适用于什么样的数据呢?

    作者:匿名用户链接:https://www.zhihu.com/question/52992079/answer/156294774来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  7. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

  8. (数据科学学习手札25)sklearn中的特征选择相关功能

    一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常 ...

  9. ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法

    ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法 (ITU‑R 102/6号研究课题) (2007年) 范围 数字广播系统允许提供多媒体和数据广播应用,包括视频.音频.静态图像. ...

随机推荐

  1. strcpy和memcpy的差别

    strcpy和memcpy都是标准C库函数.它们有以下的特点. strcpy提供了字符串的复制. 即strcpy仅仅用于字符串复制.而且它不仅复制字符串内容之外,还会复制字符串的结束符,strcpy_ ...

  2. [Android Pro] AndroidX了解一下

    cp : https://blog.csdn.net/qq_17766199/article/details/81433706 1.说明 官方原文如下: We hope the division be ...

  3. 转载-vim配置收藏

    转载自:http://www.cnblogs.com/ma6174/archive/2011/12/10/2283393.html 1.按F5可以直接编译并执行C.C++.java代码以及执行shel ...

  4. android学习笔记(8)linearlayout与android:layout_weight学习

    一,linearlayout 线性布局,布局文件里设置多个linearlayout来达到总体线性布局的风格. android:gravity="right"对齐方式,居右对齐,gr ...

  5. WIN10平板如何录制视频,为什么录制屏幕无法播放

    你的平板分辨率太高(系统推荐2736X1824),实际上一半就够了(1368X912),因为大部分传统显示器分辨率只有1280X720这种.把分辨率调低还有很多的好处,因为很多软件在分辨率太高的情况下 ...

  6. ISO镜像安装Ubuntu 13.04 64位,启动菜单制作

    1.将光盘镜像中的vmlinuz.efi.initrd.lz,和镜像本身(ubuntu....iso) 三个文件复制到U盘根目录下.如果下面的方法没成功启动,你可能要把U盘格式化为USB-HDD FA ...

  7. 基于Centos体验自然语言处理 by Python SDK

    系统要求: CentOS 7.2 64 位操作系统 准备工作 获取 SecretId 和 SecretKey 前往 密钥管理 页面获取你的 SecretId 和 SecretKey 信息,这些信息将会 ...

  8. ES 插入十万条数据耗时1573秒

  9. GuavaCache学习笔记二:Java四大引用类型回顾

    前言 上一篇已经讲了,如何自己实现一个LRU算法.但是那种只是最基本的实现了LRU的剔除策略,并不能在生产中去使用.因为Guava Cache中使用的是SoftReference去做的value实现, ...

  10. css自适应浏览器大小

    css自适应浏览器大小 1.屏幕 > 900px :显示3列 2.450px < 屏幕 < 900px :显示2列 3.屏幕 < 450px :显示1列 <!DOCTYP ...