BZOJ 3295 【Cqoi2011】 动态逆序对
Description
Input
Output
HINT
$n \leq 100000$ $m \leq 50000$
这道题做法很多……但是我来做这道题只是为了练CDQ分治的……
首先,我们可以考虑当删除一个数之后逆序对数减少了多少。不难发现,减少的逆序对数就是 这个数 前面比它大的数的个数 加上 后面比它小的数的个数。
那么,如果我们强行把最后数列中剩下的数也删掉,那么我们就得到了$n$个操作,用 $(x_i,y_i,z_i)$ 表示操作$i$是在时刻$z$把$y$位置上值为$x$的数给删掉。
于是,对于一个操作$i$,这个操作减少的逆序对数为 $x_j>x_i,y_j<y_i,z_j>z_i$以及$x_j<x_i,y_j>y_i,z_j>z_i$的$j$的个数。
其实这就是一个三维偏序。对于两个式子分别在CDQ分治的时候扫一遍即可。 大概的思路就是排序一维,分治时归并一维,剩下一维再用树状数组来维护。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010 using namespace std;
typedef long long llg; struct data{
int x,y,b;
bool operator < (const data &h)const{return x>h.x;}
}s[maxn],ss[maxn];
int c[maxn],n,m,a[maxn],ans[maxn];
bool w[maxn]; llg ana; int getint(){
int w=;bool q=;
char c=getchar();
while((c>''||c<'')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=;
while(c>=''&&c<='') w=w*+c-'',c=getchar();
return q?-w:w;
} void add(int x,int y){while(x<=n) c[x]+=y,x+=x&(-x);}
int sum(int x){
int t=;
while(x) t+=c[x],x-=x&(-x);
return t;
} void solve(int l,int r){
if(l>=r) return;
int mid=l+r>>,now=l,kk=l-,k1=l,k2=mid+;
solve(l,mid); solve(mid+,r);
for(int i=mid+;i<=r;i++){
while(s[now].y<s[i].y && now<=mid) add(s[now].b,),now++;
ans[s[i].b]+=sum(n)-sum(s[i].b);
}
for(int i=l;i<now;i++) add(s[i].b,-);
now=r;
for(int i=mid;i>=l;i--){
while(s[now].y>s[i].y && now>mid) add(s[now].b,),now--;
ans[s[i].b]+=sum(n)-sum(s[i].b);
}
for(int i=now+;i<=r;i++) add(s[i].b,-);
while(k1<=mid && k2<=r)
if(s[k1].y<s[k2].y) ss[++kk]=s[k1++];
else ss[++kk]=s[k2++];
while(k1<=mid) ss[++kk]=s[k1++];
while(k2<=r) ss[++kk]=s[k2++];
for(int i=l;i<=r;i++) s[i]=ss[i];
} int main(){
File("a");
n=getint(); m=getint();
for(int i=;i<=n;i++) a[getint()]=i;
for(int i=;i<=m;i++){
s[i].x=getint(); s[i].b=i;
s[i].y=a[s[i].x]; w[s[i].x]=;
}
for(int i=,t=m;i<=n;i++)
if(!w[i]){
s[++t].x=i; s[t].b=t;
s[t].y=a[s[t].x];
}
sort(s+,s+n+); solve(,n);
for(int i=;i<=n;i++) ana+=ans[i];
for(int i=;i<=m;i++){
printf("%lld\n",ana);
ana-=ans[i];
}
}
BZOJ 3295 【Cqoi2011】 动态逆序对的更多相关文章
- BZOJ 3295: [Cqoi2011]动态逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3865 Solved: 1298[Submit][Sta ...
- Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2886 Solved: 924[Submit][Stat ...
- bzoj 3295 [Cqoi2011]动态逆序对(cdq分治,BIT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3295 [题意] n个元素依次删除m个元素,求删除元素之前序列有多少个逆序对. [思路] ...
- 【刷题】BZOJ 3295 [Cqoi2011]动态逆序对
Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...
- bzoj 3295: [Cqoi2011]动态逆序对(树套树 or CDQ分治)
Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...
- BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]
RT 传送门 首先可以看成倒着插入,求逆序对数 每个数分配时间(注意每个数都要一个时间)$t$,$x$位置,$y$数值 $CDQ(l,r)$时归并排序$x$ 然后用$[l,mid]$的加入更新$[mi ...
- BZOJ 3295 [CQOI2011]动态逆序对 (三维偏序CDQ+树状数组)
题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数 ...
- BZOJ 3295 [Cqoi2011]动态逆序对 ——CDQ分治
时间.位置.数字为三个属性. 排序时间,CDQ位置,树状数组处理数字即可. #include <cstdio> #include <cstring> #include < ...
- 【BZOJ 3295】动态逆序对 - 分块+树状数组
题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...
- 【Bzoj 3295】 动态逆序对(树套树|CDQ分治)
[题意] 每次删除一个数,然后问删除前逆序对数. [分析] 没有AC不开心.. 我的树状数组套字母树,应该是爆空间的,空间复杂度O(nlogn^2)啊..哭.. 然后就没有然后了,别人家的树套树是树状 ...
随机推荐
- 【代码笔记】iOS-点击一个按钮会出现多个按钮的动画效果
一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...
- ios开发UI篇—使用纯代码自定义UItableviewcell实现一个简单的微博界面布局
本文转自 :http://www.cnblogs.com/wendingding/p/3761730.html ios开发UI篇—使用纯代码自定义UItableviewcell实现一个简单的微博界面布 ...
- 网络编程2--毕向东java基础教程视频学习笔记
Day 23 08 Udp接收端09 Udp键盘录入数据方式10 Udp聊天11 TCP传输12 TCP传输213 TCP练习14 TCP复制文件 08 Udp接收端 需求:定义一个应用程序,用于接收 ...
- Asp.net MVC验证哪些事(3)-- Remote验证及其改进(附源码)
表单中的输入项,有些是固定的,不变的验证规则,比如字符长度,必填等.但有些是动态的,比如注册用户名是否存在这样的检查,这个需要访问服务器后台才能解决.这篇文章将会介绍MVC中如何使用[RemoteAt ...
- JavaScript Patterns 5.8 Chaining Pattern
Chaining Pattern - Call methods on an object one after the other without assigning the return values ...
- Oracle global database name与db link的纠缠关系
ORACLE数据库中Global Database Name与DB LINKS的关系还真是有点纠缠不清,在说清楚这个关系前,我们先来了解一下Global Database Name的概念 Global ...
- 已知2个一维数组:a[]={3,4,5,6,7},b[]={1,2,3,4,5,6,7};把数组a与数组b ,对应的元素乘积再赋值给数组b,如:b[2]=a[2]*b[2];最后输出数组b的元素。
int[]a={3,4,5,6,7}; int[]b={1,2,3,4,5,6,7}; int[] arry=new int[7]; System.out.print("数组b[]={&qu ...
- Hadoop+MongoDB的四种方案
背景: 公司核心业务库现存在MongoDB中,分布在6台MongoDB节点.现面临如下问题: 1.最大的一张表有10多个G,MongoDB在查询方面尚能胜任,但是涉及到复杂计算时会比较吃力. 2.Mo ...
- SQL与NoSQL(关系型与非关系型)数据库的区别
永远正确的经典答案依然是:具体问题具体分析. 数据表VS.数据集 关系型和非关系型数据库的主要差异是数据存储的方式.关系型数据天然就是表格式的,因此存储在数据表的行和列中.数据表可以彼此关联协作存储, ...
- 烂泥:nginx同时支持asp.net与php
本文由秀依林枫提供友情赞助,首发于烂泥行天下. 经过两天的实验,终于让nginx同时支持asp.net与php了.下面就把具体的配置过程记录如下. 注意:本次实验OS:centos6 64bit. 尽 ...