斯坦福第七课:正则化(Regularization)
7.1 过拟合的问题
7.2 代价函数
7.3 正则化线性回归
7.4 正则化的逻辑回归模型
7.1 过拟合的问题
如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据。
下图是一个回归问题的例子:
第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一 个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。
分类问题中也存在这样的问题:
就以多项式理解,x 的次数越高,拟合的越好,但相应的预测的能力就可能变差。 问题是,如果我们发现了过拟合问题,应该如何处理?
1. 丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征 或者使用一些模型选择的算法来帮忙(例如 PCA)
2. 正则化。 保留所有的特征,但是减少参数的大小(magnitude)。
7.2 代价函数
上面的回归问题中如果我们的模型是:
我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能 让这些高次项的系数接近于 0 的话,我们就能很好的拟合了。
所以我们要做的就是在一定程度上减小这些参数θ的值,这就是正则化的基本方法。我们决定要减少 θ3 和 θ4 的大小,我们要做的便是修改代价函数,在其中 θ3 和 θ4 设置一点惩罚。这样做的话,我们在尝试最小化代价时也需要将这个惩罚纳入考虑中,并最终导致选 择较小一些的 θ3和θ4。修改后的代价函数如下:
通过这样的代价函数选择出的 θ3 和 θ4 对预测结果的影响就比之前要小许多。假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚, 并且让代价函数最优化的软件来选择这些惩罚的程度。这样的结果是得到了一个较为简单的 能防止过拟合问题的假设:
其中 λ 又称为正则化参数(Regularization Parameter)。 注:根据惯例,我们不对 θ0 进行惩罚。经过正则化处理的模型与原模型的可能对比如下图所示:
如果选择的正则化参数 λ 过大,则会把所有的参数都最小化了,导致模型变成
也就是上图中红色直线所示的情况,造成欠拟合。
那为什么增加的一项
但若λ的值太大了,那么θ(不包括θ0)都会趋近于 0,这样我们所得到的只能是一条 平行于 x 轴的直线。
所以对于正则化,我们要取一个合理的λ的值,这样才能更好的应用正则化。
7.3 正则化线性回归
正则化线性回归的代价函数为:
如果我们要使用梯度下降发令这个代价函数最小化,因为我们未对 θ0 进行正则化,所 以梯度下降算法将分两种情形:
对上面的算法中 j=1,2,...,n 时的更新式子进行调整可得:
可以看出,正则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令 θ 值减少了一个额外的值。
我们同样也可以利用正规方程来求解正则化线性回归模型,方法如下所示:
图中的矩阵尺寸为 (n+1)*(n+1)。
7.4 正则化的逻辑回归模型
同样对于逻辑回归,我们也给代价函数增加一个正则化的表达式,得到:
要最小化该代价函数,通过求导,得出梯度下降算法为:
注:看上去同线性回归一样,但是知道
Octave 中,我们依旧可以用 fminuc 函数来求解代价函数最小化的参数,值得注意的是参数
注意:
1.虽然正则化的逻辑回归中的梯度下降和正则化的线性回归中的表达式看起来一样,但由于两者的 h(x)不同所以还是有很大差别。
2.
斯坦福第七课:正则化(Regularization)的更多相关文章
- Kali Linux Web 渗透测试视频教程— 第七课 OpenVas
Kali Linux Web 渗透测试视频教程— 第七课 OpenVas 文/玄魂 视频教程地址:http://edu.51cto.com/course/course_id-1887.html 目录 ...
- NeHe OpenGL教程 第七课:光照和键盘
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- 【C语言探索之旅】 第二部分第七课:文件读写
内容简介 1.课程大纲 2.第二部分第七课: 文件读写 3.第二部分第八课预告: 动态分配 课程大纲 我们的课程分为四大部分,每一个部分结束后都会有练习题,并会公布答案.还会带大家用C语言编写三个游戏 ...
- 【C语言探索之旅】 第一部分第七课:循环语句
内容简介 1.课程大纲 2.第一部分第七课: 循环语句 3.第一部分第八课预告: 第一个C语言小游戏 课程大纲 我们的课程分为四大部分,每一个部分结束后都会有练习题,并会公布答案.还会带大家用C语言编 ...
- 【Cocos游戏实战】功夫小子第七课之游戏主功能场景逻辑功能和暂停功能场景的分析和实现
CSDN的markdown编辑器是吃屎了么! !.什么玩意.!写了一半写不了东西还全没了,搞个毛线! 本节课的视频教程地址是:第七课在此 假设本教程有帮助到您,希望您能点击进去观看一下,并且如今注冊成 ...
- [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...
- Python学习第七课
Python学习第七课 'Alex' "Alex"print('hello'*5) #重复输出字符串 print('hellowold'[2:]) #类似于切片操作:会取出 llo ...
- [译]Quartz.NET 框架 教程(中文版)2.2.x 之第七课 触发监听器和作业任务监听器
第七课:触发监听器和作业任务监听器 监听器是在调度器中基于事件机制执行操作的对象.你大概可以猜到,触发监听器接收响应跟触发器有关的事件,作业任务监听器接收响应跟作业任务有关的事件. 跟触发器有关的事件 ...
- zzL1和L2正则化regularization
最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化 ...
随机推荐
- 剑指offer习题集1
1.打印二叉树 程序很简单,但是其中犯了一个小错误,死活找不到,写代码要注意啊 这里左右子树,要注意是node->left,结果写成root->left vector<int> ...
- ios delegate你必须知道的事情
在我们的class中设计delegate的时候,我们通常会有几个注意事项. 假设我的class叫做MyClass,那我们可能会有定义一个MyClassDelegate这个protocol当作我的del ...
- iOS 获取文件的目录路径的几种方法 [转]
iOS 获取文件的目录路径的几种方法 2 years ago davidzhang iphone沙箱模型的有四个文件夹,分别是什么,永久数据存储一般放在什么位置,得到模拟器的路径的简单方式是什么. d ...
- asp.net中选择数字时,另外的数字同时发生变化(适用dev控件)
关键: <ClientSideEvents ValueChanged="AgioChanged" /> <div class="col-sm-4 ...
- 【SSM 1】SpringMVC、Spring和Struts的区别
导读:近期做到的项目中,用到的框架师SSM(SpringMVC+Spring+Mybatis),那么在这之前用过SSH,这里主要是区分一下SpringMVC和Struts,但是由于SpringMVC和 ...
- kindeditor-4.1.7应用
页面: <script type="text/javascript" src="include/kindeditor/kindeditor.js"> ...
- oracle client与ODAC的字符集
1.pl/sql developer 9里检查客户端字符集与服务端是否一致 首选项,选项,检查客户机与服务器字符集是否匹配 2.Windows环境变量的修改即时生效 3.ODAC12安装后字符集的变化 ...
- 升级 DNX 和 DNVM
升级命令: dnvm upgrade -u dnvm upgrade -u –runtime CoreCLR -u 表示 unstable(不稳定),不带 -u 表示升级到最新稳定(stable)版本 ...
- hdu 2896 字典树解法
#include <iostream> #include <cstring> #include <cstdio> #include <cstdlib> ...
- Installshield 打包安装包心得
制作简单的安装软件 声明:下面的教程,是把读者当做完全没接触过IS的角度来制作的. 1. 启动InstallShield 12.建立一个InstallShield MSI Project,如图: 2 ...