Apache Spark源码走读之10 -- 在YARN上运行SparkPi
y欢迎转载,转载请注明出处,徽沪一郎。
概要
“spark已经比较头痛了,还要将其运行在yarn上,yarn是什么,我一点概念都没有哎,再怎么办啊。不要跟我讲什么原理了,能不能直接告诉我怎么将spark在yarn上面跑起来,I'm a dummy, just told me how to do it.”
如果你和我一样是一个对形而上的东西不是太感兴趣,而只纠结于怎么去做的话,看这份guide保证不会让你失望, :)。
前期准备
本文所有的操作基于arch linux,保证下述软件已经安装
- jdk
- scala
- maven
搭建hadoop
hadoop像它的Logo一样,真得是一个体形无比巨大的大象,如果直接入手去搞这个东东的话,肯定会昏上好长一段时间。个人取巧,从storm弄起,一路走来还算平滑。
hadoop最主要的是hdfs和MapReduce Framework,针对第二代的hadoop即hadoop 2这个Framework变成了非常流行的YARN, 要是没听说过YARN,都不好意思说自己玩过Hadoop了。
不开玩笑了,注意上面一段话中最主要的信息就是hdfs和mapreduce framework,我们接下来的所有配置都是围绕这两个主题来的。
创建用户
添加用户组: hadoop, 添加用户hduser
groupadd hadoop
useradd -b /home -m -g hadoop hduser
下载hadoop运行版
假设当前是以root用户登录,现在要切换成用户hduser
su - hduser
id ##检验一下切换是否成功,如果一切ok,将显示下列内容
uid=1000(hduser) gid=1000(hadoop) groups=1000(hadoop)
下载hadoop 2.4并解压
cd /home/hduser
wget http://mirror.esocc.com/apache/hadoop/common/hadoop-2.4.0/hadoop-2.4.0.tar.gz
tar zvxf hadoop-2.4.0.tar.gz
设置环境变量
export HADOOP_HOME=$HOME/hadoop-2.4.0
export HADOOP_MAPRED_HOME=$HOME/hadoop-2.4.0
export HADOOP_COMMON_HOME=$HOME/hadoop-2.4.0
export HADOOP_HDFS_HOME=$HOME/hadoop-2.4.0
export HADOOP_YARN_HOME=$HOME/hadoop-2.4.0
export HADOOP_CONF_DIR=$HOME/hadoop-2.4.0/etc/hadoop
为了避免每次都要重复设置这些变量,可以将上述语句加入到.bashrc文件中。
创建目录
接下来创建的目录是为hadoop中hdfs相关的namenode即datanode使用
mkdir -p $HOME/yarn_data/hdfs/namenode
mkdir -p $HOME/yarn_data/hdfs/datanode
修改Hadoop配置文件
下列文件需要相应的配置
- yarn-site.xml
- core-site.xml
- hdfs-site.xml
- mapred-site.xml
切换到hadoop安装目录
$cd $HADOOP_HOME
修改etc/hadoop/yarn-site.xml, 在<configuration>和</configuration>之间添加如下内容,其它文件添加位置与此一致
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
etc/hadoop/core-site.xml
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value> <!--YarnClient会用到该配置项-->
</property>
etc/hadoop/hdfs-site.xml
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/hduser/yarn_data/hdfs/namenode</value> <!--节点格式化中被用到-->
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/home/hduser/yarn_data/hdfs/datanode</value>
</property>
etc/hadoop/mapred-site.xml
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
格式化namenode
$ bin/hadoop namenode -format
启动hdfs相关进程
启动namenode
$ sbin/hadoop-daemon.sh start namenode
启动datanode
$sbin/hadoop-daemon.sh start datanode
启动mapreduce framework相关进程
启动Resource Manager
sbin/yarn-daemon.sh start resourcemanager
启动Node Manager
sbin/yarn-daemon.sh start nodemanager
启动Job History Server
sbin/mr-jobhistory-daemon.sh start historyserver
验证部署
$jps
18509 Jps
17107 NameNode
17170 DataNode
17252 ResourceManager
17309 NodeManager
17626 JobHistoryServer
运行wordCount
验证一下hadoop搭建成功与否的最好办法就是在上面跑个wordcount试试
$mkdir in
$cat > in/file
This is one line
This is another line
将文件复制到hdfs中
$bin/hdfs dfs -copyFromLocal in /in
运行wordcount
bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.0.jar wordcount /in /out
查看运行结果
bin/hdfs dfs -cat /out/*
先歇一会,配置到这里,已经一头汗了,接下来将spark在yarn上的运行,再坚持一小会
在yarn上运行SparkPi
下载spark
下载spark for hadoop2的版本
运行SparkPi
继续以hduser身份运行,最主要的一点就是设置YARN_CONF_DIR或HADOOP_CONF_DIR环境变量
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_JAR=./assembly/target/scala-2.10/spark-assembly_2.10-0.9.1-hadoop2.2.0.jar \
./bin/spark-class org.apache.spark.deploy.yarn.Client \
--jar ./examples/target/scala-2.10/spark-examples_2.10-assembly-0.9.1.jar \
--class org.apache.spark.examples.JavaSparkPi \
--args yarn-standalone \
--num-workers 1 \
--master-memory 512m \
--worker-memory 512m \
--worker-cores 1
检查运行结果
运行结果保存在相关application的stdout目录,使用以下指令可以找到
cd $HADOOP_HOME
find . -name "*stdout"
假设找到的文件为./logs/userlogs/application_1400479924971_0002/container_1400479924971_0002_01_000001/stdout,使用cat可以看到结果
cat ./logs/userlogs/application_1400479924971_0002/container_1400479924971_0002_01_000001/stdout
Pi is roughly 3.14028
Apache Spark源码走读之10 -- 在YARN上运行SparkPi的更多相关文章
- Apache Spark源码走读之7 -- Standalone部署方式分析
欢迎转载,转载请注明出处,徽沪一郎. 楔子 在Spark源码走读系列之2中曾经提到Spark能以Standalone的方式来运行cluster,但没有对Application的提交与具体运行流程做详细 ...
- Apache Spark源码走读之16 -- spark repl实现详解
欢迎转载,转载请注明出处,徽沪一郎. 概要 之所以对spark shell的内部实现产生兴趣全部缘于好奇代码的编译加载过程,scala是需要编译才能执行的语言,但提供的scala repl可以实现代码 ...
- Apache Spark源码走读之23 -- Spark MLLib中拟牛顿法L-BFGS的源码实现
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读. 拟牛顿法 数学原理 代码实现 L-BFGS算法中使 ...
- Apache Spark源码走读之13 -- hiveql on spark实现详解
欢迎转载,转载请注明出处,徽沪一郎 概要 在新近发布的spark 1.0中新加了sql的模块,更为引人注意的是对hive中的hiveql也提供了良好的支持,作为一个源码分析控,了解一下spark是如何 ...
- Apache Spark源码走读之18 -- 使用Intellij idea调试Spark源码
欢迎转载,转载请注明出处,徽沪一郎. 概要 上篇博文讲述了如何通过修改源码来查看调用堆栈,尽管也很实用,但每修改一次都需要编译,花费的时间不少,效率不高,而且属于侵入性的修改,不优雅.本篇讲述如何使用 ...
- Apache Spark源码走读之6 -- 存储子系统分析
欢迎转载,转载请注明出处,徽沪一郎. 楔子 Spark计算速度远胜于Hadoop的原因之一就在于中间结果是缓存在内存而不是直接写入到disk,本文尝试分析Spark中存储子系统的构成,并以数据写入和数 ...
- Apache Spark源码走读之5 -- DStream处理的容错性分析
欢迎转载,转载请注明出处,徽沪一郎,谢谢. 在流数据的处理过程中,为了保证处理结果的可信度(不能多算,也不能漏算),需要做到对所有的输入数据有且仅有一次处理.在Spark Streaming的处理机制 ...
- Apache Spark源码走读之9 -- Spark源码编译
欢迎转载,转载请注明出处,徽沪一郎. 概要 本来源码编译没有什么可说的,对于java项目来说,只要会点maven或ant的简单命令,依葫芦画瓢,一下子就ok了.但到了Spark上面,事情似乎不这么简单 ...
- Apache Spark源码走读之22 -- 浅谈mllib中线性回归的算法实现
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文简要描述线性回归算法在Spark MLLib中的具体实现,涉及线性回归算法本身及线性回归并行处理的理论基础,然后对代码实现部分进行走读. 线性回归模型 ...
随机推荐
- Mysql 自动化任务
Mysql自动化任务,有两种:基于事件,基于时间. 基于事件,可由触发器来实现.具体触发器的编写比较简单,其语法规范可参照:http://www.jb51.net/article/59552.htm. ...
- linux安装gcc
方法:输入命令: :(1) :yum -y install gcc (2) yum -y install gcc-c++(3)yum install make 我的再输入 yum -y instal ...
- tar -cvPf new.tar `rpm -ql vsftpd` 建议不要用绝对路径'/'
tar -cvPf new.tar `rpm -ql vsftpd` 解压这样的压缩包,会在当前用户的家目录下解压:~./xxxx;加参数-C :tar -xvf xxx.tar -C / ;来指定 ...
- hrbustoj 1179:下山(DFS+剪枝)
下山Time Limit: 1000 MS Memory Limit: 65536 KTotal Submit: 271(111 users) Total Accepted: 129(101 user ...
- js 默认行为取消
js 默认行为取消 可以简单的 return false; 看需求吧 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit ...
- Android: 启动另外的APP及传递参数(转)
转载自:http://blog.csdn.net/iefreer/article/details/8812585 有时候需要从一个APP中启动另外一个APP,比如Twitter/微信等. 如果你不知道 ...
- C/C++知识点
1 cout<<endl;什么意思? 就是回车的意思~ 相当于C语言里面的printf("\n"); 2 cin>> 键盘输入 例子:double r=1 ...
- Android开发方向
运行Android平台的硬件只是手机.平台电脑等便携式设备,这些设备的计算能力.数据存储能力都是有限的, 不太可能在Android平台上部署大型企业级应用,因此Android应用可能以纯粹客户端应用的 ...
- Servlet应用的运行流程
其中,红色部分为我们开发人员要做的,其他部分是框架做的. 学习就要搞懂整个运行的流程!否则,不利于个人技术的积累!
- loadrunner关联边界乱码
问题现象: 如上图中的我想关联 <ins class="curmarker" id="cur2494"></ins><ins cl ...