HDU3657 Game(最小割)
题目大概说,给一个n×m的格子,每个格子都有数字,选择一个格子就能加上格子数字的分数,有k个格子必须选择,如果两个相邻的格子都被选择了那分数要减去两个格子数字的与再乘2。问能取得的最大分数。
已经知道这题是最小割。。黑白染色,画了下图,觉得很有道理,然后写了写就AC了。。具体建图是这样的:
- 对格子进行黑白染色形成二分图,源点向X部的点连容量为选该点能获得分数的边,Y部的点向汇点连容量为选该点能获得分数的边,对于必须选择的点则连容量INF的边
- 对于X部与Y部在格子中相邻的点,从X部的点向Y部的点连容量为同时选择两点失去的分数,即二者的与再乘2
这样S-T的割边集的权和就是失去的分数,包括同时选相邻的两点失去的分数以及不选择某点不能得到的分数。于是要求的结果就是格子中所有点的数字和-最小割。
不过如果不知道这题是最小割。。我好像想不到。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 2555
#define MAXM 2555*222 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
}
int dx[]={,,,-};
int dy[]={,-,,};
int main(){
int n,m,k,a,b,map[][];
bool flag[][];
while(~scanf("%d%d%d",&n,&m,&k)){
int tot=;
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
scanf("%d",&map[i][j]);
tot+=map[i][j];
}
}
memset(flag,,sizeof(flag));
while(k--){
scanf("%d%d",&a,&b);
--a; --b;
flag[a][b]=;
}
vs=n*m; vt=vs+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
if(i+j&){
if(flag[i][j]) addEdge(vs,i*m+j,INF);
addEdge(vs,i*m+j,map[i][j]);
for(int k=; k<; ++k){
int nx=i+dx[k],ny=j+dy[k];
if(nx< || nx>=n || ny< || ny>=m) continue;
addEdge(i*m+j,nx*m+ny,*(map[i][j]&map[nx][ny]));
}
}else{
if(flag[i][j]) addEdge(i*m+j,vt,INF);
addEdge(i*m+j,vt,map[i][j]);
}
}
}
printf("%d\n",tot-ISAP());
}
return ;
}
HDU3657 Game(最小割)的更多相关文章
- 最大流&最小割 - 专题练习
[例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- BZOJ-2127-happiness(最小割)
2127: happiness(题解) Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1806 Solved: 875 Description 高一 ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- BZOJ3438 小M的作物(最小割)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...
- 最大流-最小割 MAXFLOW-MINCUT ISAP
简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...
- bzoj1412最小割
太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...
- 【BZOJ1497】[NOI2006]最大获利 最小割
裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...
- 二分图&网络流&最小割等问题的总结
二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...
随机推荐
- We are 歪果仁带你灰
We are 歪果仁带你灰 我叫赖彦谕 不爱什么诗和远方 只爱饭桌上的一菜一肉一杯酒 真的很希望有一天我可以成为那个对待学习像对待美食一样的人类 让自己沉浸在美食和知识的海洋中无法自拔 我也对未来的软 ...
- [Effective JavaScript 笔记] 第13条:使用立即调用的函数表达式创建局部作用域
function wrapElements(a){ var res=[],i,n; for(i=0,n=a.length;i<n;i++){ res[i]=function(){return a ...
- 开机提示grub可咋办啊
导读 GRUB是多启动规范的实现,它允许用户可以在计算机内同时拥有多个操作系统,并在计算机启动时选择希望运行的操作系统.GRUB可用于选择操作系统分区上的不同内核,也可用于向这些内核传递启动参数. 1 ...
- iOS团队开发者测试
那么你需要在你下载证书的那个电脑上从钥匙串-->选择证书-->右键到处证书,保存为.p12的证书,以后这个证书拷贝到任何电脑上去都是可以使用的! 本来只有一台电脑可以测试, 现在要团队开发 ...
- Capistrano SSH::AuthenticationFailed, not prompting for password
文章是从我的个人博客上粘贴过来的, 大家也可以访问 www.iwangzheng.com 在本地执行cap deploy部署的时候会报错: connection failed for: 11.11.1 ...
- Leetcode 之Validate Binary Search Tree(53)
判断是否是有效的二叉搜索树,即左子树的值小于根结点,右子树的值大于根结点.可以采用递归的方式来完成,递归时如何 传递有效的参数与根结点进行比较,是此题的难点. bool isValidBST(Tree ...
- Coursera台大机器学习课程笔记15 -- Three Learning Principles
这节课是最后一节,讲的是做机器学习的三个原则. 第一个是Occan's razor,即越简单越好.接着解释了什么是简单的hypothesis,什么是简单的model.关于为什么越简单越好,林老师从大致 ...
- 项目总结(四)--- 网络封包分析工具Charles
Charles是Mac下一款截取网络封包的工具,主要原理就是将自己设置成为熊网络访问的代理服务器,这样的话,所有的网络请求都得通过它来完成,从而实现网络封包的拦截分析. 这款软件功能整体来说还是非常强 ...
- 大神的游戏(codevs 1353)
题目描述 Description 在那遥远的机房,有一片神奇的格子.为了方便起见,我们编号为1~n.传说只要放入一些卡片,就能实现愿望.卡片一共有m种颜色,但是相邻的格子间不能放入相同颜色的卡片.只要 ...
- centos下安装五笔输入法的教程
[root@ok ~]# yum update [root@ok ~]# yum install ibus-table-chinese-wubi-haifeng 以上两步已经成功!! #yum ins ...