题目大概说,给一个n×m的格子,每个格子都有数字,选择一个格子就能加上格子数字的分数,有k个格子必须选择,如果两个相邻的格子都被选择了那分数要减去两个格子数字的与再乘2。问能取得的最大分数。

已经知道这题是最小割。。黑白染色,画了下图,觉得很有道理,然后写了写就AC了。。具体建图是这样的:

  • 对格子进行黑白染色形成二分图,源点向X部的点连容量为选该点能获得分数的边,Y部的点向汇点连容量为选该点能获得分数的边,对于必须选择的点则连容量INF的边
  • 对于X部与Y部在格子中相邻的点,从X部的点向Y部的点连容量为同时选择两点失去的分数,即二者的与再乘2

这样S-T的割边集的权和就是失去的分数,包括同时选相邻的两点失去的分数以及不选择某点不能得到的分数。于是要求的结果就是格子中所有点的数字和-最小割

不过如果不知道这题是最小割。。我好像想不到。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 2555
#define MAXM 2555*222 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
}
int dx[]={,,,-};
int dy[]={,-,,};
int main(){
int n,m,k,a,b,map[][];
bool flag[][];
while(~scanf("%d%d%d",&n,&m,&k)){
int tot=;
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
scanf("%d",&map[i][j]);
tot+=map[i][j];
}
}
memset(flag,,sizeof(flag));
while(k--){
scanf("%d%d",&a,&b);
--a; --b;
flag[a][b]=;
}
vs=n*m; vt=vs+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
if(i+j&){
if(flag[i][j]) addEdge(vs,i*m+j,INF);
addEdge(vs,i*m+j,map[i][j]);
for(int k=; k<; ++k){
int nx=i+dx[k],ny=j+dy[k];
if(nx< || nx>=n || ny< || ny>=m) continue;
addEdge(i*m+j,nx*m+ny,*(map[i][j]&map[nx][ny]));
}
}else{
if(flag[i][j]) addEdge(i*m+j,vt,INF);
addEdge(i*m+j,vt,map[i][j]);
}
}
}
printf("%d\n",tot-ISAP());
}
return ;
}

HDU3657 Game(最小割)的更多相关文章

  1. 最大流&最小割 - 专题练习

    [例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...

  2. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  3. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  4. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  5. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  6. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  7. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

  8. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

  9. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

随机推荐

  1. [Effective JavaScript 笔记]第55条:接收关键字参数的选项对象

    53节建议保持参数顺序的一致约定对于帮助程序员记住每个参数在函数调用中的意义很重要.参数较少这个主意不错,但如果参数过多后,就出现麻烦了,记忆和理解起来都不太容易. 参数蔓延 如下面这些代码: var ...

  2. 第16章 使用Squid部署代理缓存服务

    章节概述: 本章节从代理缓存服务的工作原理开始讲起,让读者能够清晰理解正向代理(普通模式.透明模式)与反向代理的作用. 正确的使用Squid服务程序部署代理缓存服务可以有效提升访问静态资源的效率,降低 ...

  3. [BZOJ1163][BZOJ1339][Baltic2008]Mafia

    [BZOJ1163][BZOJ1339][Baltic2008]Mafia 试题描述 匪徒准备从一个车站转移毒品到另一个车站,警方准备进行布控. 对于每个车站进行布控都需要一定的代价,现在警方希望使用 ...

  4. linux rsync +inotify 实现 实时同步

    前言:     rsync可以实现触发式的文件同步,但是通过crontab守护进程方式进行触发,同步的数据和实际数据会有差异,而inotify可以监控文件系统的各种变化,当文件有任何变动时,就触发rs ...

  5. 以Python角度学习Javascript(一)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAO4AAADZCAIAAACo85tgAAAgAElEQVR4Aey9SdAs13XnV/P8jW8e8D ...

  6. CSS clearfix

    The problem happens when a floated element is within a container box, that element does not automati ...

  7. 多表利用DIH批量导入数据并建立索引注意事项

    如果希望同时对多个表进行全文检索,那我们该如何处理呢?利用DIH导入数据并建立索引时.schema.xml中配置了uniqueKey为id <uniqueKey>id</unique ...

  8. iOS 中的第三方库管理工具

    xcode没有android studio中的gradle进行第三方库管理,但是有第三方的库管理工具CocoaPods,https://github.com/CocoaPods/CocoaPods/w ...

  9. js删除提醒

    2014年7月3日 16:28:03 html <input type="submit" name="submit" value="删除&quo ...

  10. 快速排序模板qsort(转载)

     qsort  用 法: void qsort(void *base, int nelem, int width, int (*fcmp)(const void *,const void *)); 各 ...