POJ1180 Batch Scheduling 解题报告(斜率优化)
题目链接:http://poj.org/problem?id=1180
题目描述:
A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.
You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.
Input
Output
Sample Input
5
1
1 3
3 2
4 3
2 3
1 4
Sample Output
153
Source


#include<bits/stdc++.h>
#define ll long long
using namespace std; const int maxn=1e4+;
int n,s;
int sumt[maxn],sumc[maxn],q[maxn];
ll f[maxn];
int main()
{
scanf("%d%d",&n,&s);
for (int i=;i<=n;i++)
{
int t,c;
scanf("%d%d",&t,&c);
sumt[i]=sumt[i-]+t;
sumc[i]=sumc[i-]+c;
}
int l=,r=;
for (int i=;i<=n;i++)
{
while (l<r&&(f[q[l+]]-f[q[l]])<=(s+sumt[i])*(sumc[q[l+]]-sumc[q[l]])) l++;
f[i]=f[q[l]]-(s+sumt[i])*sumc[q[l]]+sumt[i]*sumc[i]+s*sumc[n];
while (l<r&&(f[q[r]]-f[q[r-]])*(sumc[i]-sumc[q[r]])>=(f[i]-f[q[r]])*(sumc[q[r]]-sumc[q[r-]])) r--;
q[++r]=i;
}
printf("%lld",f[n]);
return ;
}
声明:本博客内容参考李煜东算法竞赛进阶指南
POJ1180 Batch Scheduling 解题报告(斜率优化)的更多相关文章
- [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...
- POJ-1180 Batch Scheduling (分组求最优值+斜率优化)
题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi.现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数 ...
- POJ1180 Batch Scheduling -斜率优化DP
题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...
- poj1180 Batch Scheduling
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3590 Accepted: 1654 Description There ...
- 【LeetCode】1029. Two City Scheduling 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 小根堆 排序 日期 题目地址:https://lee ...
- P2365 任务安排 / [FJOI2019]batch(斜率优化dp)
P2365 任务安排 batch:$n<=10000$ 斜率优化入门题 $n^{3}$的dp轻松写出 但是枚举这个分成多少段很不方便 我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先 ...
- LeetCode :1.两数之和 解题报告及算法优化思路
最近开始重拾算法,在 LeetCode上刷题.顺便也记录下解题报告以及优化思路. 题目链接:1.两数之和 题意 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 ...
- poj 1180 Batch Scheduling (斜率优化)
Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...
- POJ 1180 Batch Scheduling(斜率优化DP)
[题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...
随机推荐
- Cocos2d-x 3.0多线程异步资源载入
Cocos2d-x从2.x版本号到上周刚刚才公布的Cocos2d-x 3.0 Final版,其引擎驱动核心依然是一个单线程的"死循环".一旦某一帧遇到了"大活儿" ...
- 百度分页效果之纯jsp版
数据库连接工具类 package com.gao.page.utils; import java.sql.Connection; import java.sql.DriverManager; publ ...
- lua简单类的实现
原文地址:http://blog.csdn.net/qqmcy/article/details/37725177 类实现: MyClass = class("MyClass") - ...
- 实现 jstl标签foreach 功能
jsp 页面 <%@ page language="java" contentType="text/html; charset=UTF-8" pageEn ...
- 使用Powershell 的获取别的机器WMI类失败解决方法!
有些时候须要连接多台机器去获取他们的类,可是有些时候我们发现计算机无法连接,这个时候怎么办呢? 请改动组策略中下面配置: 能够使用Gpmc.msc 进行以后.本地计算机策略--计算机配置--管理模板- ...
- Flutter 1.5 发布,正式成为全平台 UI 框架!
一. 序 在 Google I/O 2019 上,Dart 团队宣布推出新的 Flutter 稳定版本 1.5,这是 Flutter 迄今为止最大的一次版本发布. 伴随着 Flutter 1.5 的发 ...
- hbase的优化(全)
高可用 在HBase中Hmaster负责监控RegionServer的生命周期,均衡RegionServer的负载,如果Hmaster挂掉了,那么整个HBase集群将陷入不健康的状态,并且此时的工作状 ...
- Wordcount 和 shuffle的流程
- IEEE Access的模板的问题
这个模板果然问题还是有一些,比如caption换行得自己改class文件.首先感谢一下CSDN的一位网友的经验https://blog.csdn.net/baidu_21381705/article/ ...
- MyBatis数据持久化(三)增删改查
上篇文章中我们使用mybatis成功建立数据库会话,并从表中查询出相应的数据,本文在此基础上介绍MyBatis另外几种操作,即插入.修改.删除记录. 1.修改User.xml文件,增加几条sql语句: ...