题目链接:http://poj.org/problem?id=1180

题目描述:

There is a sequence of N jobs to be processed on one machine. The jobs are numbered from 1 to N, so that the sequence is 1,2,..., N. The sequence of jobs must be partitioned into one or more batches, where each batch consists of consecutive jobs in the sequence. The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.

You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.

Input

Your program reads from standard input. The first line contains the number of jobs N, 1 <= N <= 10000. The second line contains the batch setup time S which is an integer, 0 <= S <= 50. The following N lines contain information about the jobs 1, 2,..., N in that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.

Output

Your program writes to standard output. The output contains one line, which contains one integer: the minimum possible total cost.

Sample Input

5
1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

Source

 
看不懂题面的随便找一个翻译软件翻译一下效果都还是不错的,至少看得懂题
 
下面直接解题:
解法一:求出T,C的前缀和sumT和sumC,设f(i,j)表示把前i个任务分成j批去执行的最小费用,状态转移方程为
f(i,j)=min(0<=k<i){f(k,j-1)+(s*j+sumT[i])*(sumC[i]-sumC[k])}
时间复杂度为O(N3)
解法二:
本题其实没有规定把任务分成多少批,也就是说解法一其实有无用的状态
现在我们设f(i)表示把前i个任务分成若干批处理的最小费用,状态转移方程为
f[i]=min(0<=j<i){f[j]+sumT[i]*(sumC[i]-sumC[j])+s*(sumC[N]-sumC[j])}
这种思想叫做“费用提前计算”,先把每次s的贡献直接加起来
时间复杂度O(N2)
解法三:
我们考虑到这题的数据,对解法二的状态转移方程进行斜率优化。
去掉min,通过移项我们可以得到f[j]=(s+sumT[i])*sumC[j]+f[i]-sumT[i]*sumC[i]-s*sumC[N]
我们发现,在以sumC[j]为横坐标,f[j]为纵坐标的坐标系中,这是条以(s+sumT[i])为斜率,f[i]-sumT[i]*sumC[i]-s*sumC[N]为截距的直线
由于-sumT[i]*sumC[i]-s*sumC[N]是一个常数,斜率也是一个固定的值,这是一个线性规划问题,我们每次取最小的截距
对于点集(sumC[j],f[j])我们其实只需要维护一个下凸壳就行了。当我们需要找到当前的最优的点时,设k=s+sumT[i],最优的点和它左边的点的斜率比k小,和它右边的斜率比k大,参考下面的图。
 
另外我们还发现一点,由于sumC具有单调性,每次加入的点都会在最右边。并且sumT同样具有单调性,这说明斜率是递增的。因此我们只需要维护比当前斜率大的一条条线段,可以通过一个单调队列q来实现
具体操作如下:
1.检查队头的两个决策变量q[l]和q[l+1],斜率f[q[l+1]]-f[q[l]]/(sumC[q[l+1]]-sumC[q[l]])<=s+sumT[i],则把q[l]出队,继续检查新的队头。
2.直接取队头j=q[l]作为最优策略,执行状态转移,得到f[i]
3.把新决策i从队尾插入,在插入之前,若三个决策点j1=q[r-1],j2=q[r],j3=i不满足斜率单调递增(不满足下凸性,即i是无用决策),则直接从队尾把q[r]出队,继续检查新的队尾。
整个算法的时间复杂度O(N),完美的解决问题。
 
下面附上代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std; const int maxn=1e4+;
int n,s;
int sumt[maxn],sumc[maxn],q[maxn];
ll f[maxn];
int main()
{
scanf("%d%d",&n,&s);
for (int i=;i<=n;i++)
{
int t,c;
scanf("%d%d",&t,&c);
sumt[i]=sumt[i-]+t;
sumc[i]=sumc[i-]+c;
}
int l=,r=;
for (int i=;i<=n;i++)
{
while (l<r&&(f[q[l+]]-f[q[l]])<=(s+sumt[i])*(sumc[q[l+]]-sumc[q[l]])) l++;
f[i]=f[q[l]]-(s+sumt[i])*sumc[q[l]]+sumt[i]*sumc[i]+s*sumc[n];
while (l<r&&(f[q[r]]-f[q[r-]])*(sumc[i]-sumc[q[r]])>=(f[i]-f[q[r]])*(sumc[q[r]]-sumc[q[r-]])) r--;
q[++r]=i;
}
printf("%lld",f[n]);
return ;
}

声明:本博客内容参考李煜东算法竞赛进阶指南

POJ1180 Batch Scheduling 解题报告(斜率优化)的更多相关文章

  1. [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP

    POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...

  2. POJ-1180 Batch Scheduling (分组求最优值+斜率优化)

    题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi.现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数 ...

  3. POJ1180 Batch Scheduling -斜率优化DP

    题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...

  4. poj1180 Batch Scheduling

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3590   Accepted: 1654 Description There ...

  5. 【LeetCode】1029. Two City Scheduling 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 小根堆 排序 日期 题目地址:https://lee ...

  6. P2365 任务安排 / [FJOI2019]batch(斜率优化dp)

    P2365 任务安排 batch:$n<=10000$ 斜率优化入门题 $n^{3}$的dp轻松写出 但是枚举这个分成多少段很不方便 我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先 ...

  7. LeetCode :1.两数之和 解题报告及算法优化思路

    最近开始重拾算法,在 LeetCode上刷题.顺便也记录下解题报告以及优化思路. 题目链接:1.两数之和 题意 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 ...

  8. poj 1180 Batch Scheduling (斜率优化)

    Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...

  9. POJ 1180 Batch Scheduling(斜率优化DP)

    [题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...

随机推荐

  1. 树莓派学习笔记—— 源码方式安装opencv

    0.前言     本文介绍怎样在树莓派中通过编译源码的方式安装opencv,并通过一个简单的样例说明怎样使用opencv.     很多其它内容请參考--[树莓派学习笔记--索引博文] 1.下载若干依 ...

  2. 百度地图 key申请以及基础地图的演示

    之前做过一个拼车的项目,用到了百度地图,如今做电商项目,也遇到了要使用地图,可是刚来这公司不久项目不是自己做的,今天一个同事说定位那边有点问题,所以如今不忙,好好搞下地图,为了以后业务扩展或者出现故障 ...

  3. SSH公钥认证

    一.实验的目的 了解密钥对的创建和使用,掌握免password远程登录和远程操作 二.实验环境 本地主机 rh1: 192.168.233.3/24 远程主机 rh2: 192.168.233.4/2 ...

  4. javaScript中的事件对象event

    事件对象event,每当一个事件被触发的时候,就会随之产恒一个事件对象event,该对象中主要包括了关于该事件的基本属性,事件类型type(click.dbclick等值).目标元素target(我的 ...

  5. 固比固布局 圣杯布局 css实现传统手机app布局

    手机app的布局大致上都是头部.内容.底部三部分: 我们需要实现的是头部.底部高度固定:中间内容区域自适应且可以滚动:直接贴代码: css: html,body { width: 100%; heig ...

  6. Django shortcut functions

    django.shortcuts package提供提供帮助类和函数可以更便捷的操作MVC中的每一部分,包含: render(request, template_name,[dictionary],[ ...

  7. kinEditor动态渲染的问题

    摘自:jingyan.baidu.com/article/a65957f4a4c89a24e67f9b3d.html 在使用kindEditor时,因为textarea是动态加载的,因而对textar ...

  8. PIC c语言

    rom类型,对于占内存的类型定义为rom类型,跟标准c中的const不一样,const跟rom不能通用,否则编译会报type qualifier dismatch 有些变量定义成了rom型,那么如果改 ...

  9. c++类模板初探

    #include <iostream> #include <string> using namespace std; // 你提交的代码将嵌入到这里 ; template &l ...

  10. 模块 –SYS

    模块 –SYS os模块是跟操作系统的交互 sys是跟python解释器的交互 sys.argv 命令行参数List,第一个元素是程序本身路径 返回一个列表 In [218]: sys.argv Ou ...