Metropolis 算法又叫 Metropolis 抽样,是模拟退火算法的基础,在早期的科学计算中蒙特卡洛方法(Monte Carlo)是对大量原子在给定温度下的平衡态的随机模拟,当蒙特卡洛算法计算量偏大

1953 年,Metropolis 提出重要性采样,即以概率来接受新状态,而不是使用完全确定的规则,称为 Metropolis 准则,可以显著减小计算量

假设前一状态为 x(n),系统受到一定扰动,状态变为 x(n+1),相应地,系统能量由 E(n) 变为 E(n+1)。 定义系统由 x(n) 变为 x(n+1) 的接收概率为 p(probability of acceptance):

p=⎧⎩⎨1,exp(−E(n+1)−E(n)T),E(n+1)<E(n)E(n+1)≥E(n)

当状态转移之后,如果能量减小了,那么这种转移就被接受了(以概率 1 发生)。如果能量增大了,就说明系统偏离全局最优位置(能量最低点,模拟退火算法所要寻找的就是密度最高能量最低的位置)更远了,此时算法不会立即将其抛弃,而是进行概率判断:首先在区间 [0,1] 产生一个均匀分布的随机数 ε(np.random.rand()),如果 ε<p(p 是前面定义的接受概率),这种转移也将被接受,否则拒绝转移,进入下一步,如此循环。

这正是 Metropolis 算法,其核心思想是当能量增加时以一定概率接收,而不是一味的拒绝;

Metropolis 采样与蒙特卡洛算法的更多相关文章

  1. python蒙特卡洛算法模拟赌博模型

    sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campai ...

  2. matlab下二重积分的蒙特卡洛算法

    %%monte_carlo_ff.m %被积函数(二重) function ff=monte_carlo_ff(x,y) ff=x*y^2;%函数定义处 end %%monte_carlo.m %蒙特 ...

  3. 强化学习 3—— 使用蒙特卡洛采样法(MC)解决无模型预测与控制问题

    一.问题引入 回顾上篇强化学习 2 -- 用动态规划求解 MDP我们使用策略迭代和价值迭代来求解MDP问题 1.策略迭代过程: 1.评估价值 (Evaluate) \[v_{i}(s) = \sum_ ...

  4. Metropolis Hasting算法

    Metropolis Hasting Algorithm: MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样.主要原理是构造了一个精妙的Markov链,使得该链的稳态 ...

  5. PCL采样一致性算法

    在计算机视觉领域广泛的使用各种不同的采样一致性参数估计算法用于排除错误的样本,样本不同对应的应用不同,例如剔除错误的配准点对,分割出处在模型上的点集,PCL中以随机采样一致性算法(RANSAC)为核心 ...

  6. Reservoir Sampling 蓄水池采样算法

    https://blog.csdn.net/huagong_adu/article/details/7619665 https://www.jianshu.com/p/63f6cf19923d htt ...

  7. 蒙特卡洛马尔科夫链(MCMC)

    蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明: ...

  8. MCMC: The Metropolis Sampler

    本文主要译自 MCMC: The Metropolis Sampler 正如之前的文章讨论的,我们可以用一个马尔可夫链来对目标分布 \(p(x)\) 进行采样,通常情况下对于很多分布 \(p(x)\) ...

  9. IRT模型的参数估计方法(EM算法和MCMC算法)

    1.IRT模型概述 IRT(item response theory 项目反映理论)模型.IRT模型用来描述被试者能力和项目特性之间的关系.在现实生活中,由于被试者的能力不能通过可观测的数据进行描述, ...

随机推荐

  1. MySql Order By 多个字段 排序规则

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/xlxxcc/article/details/52250963 说在前面 突发奇想,想了解一下mysq ...

  2. C语言编程程序的内存怎样布局

    在c语言中,每一个变量和函数有两个属性:数据类型和数据的存储类别. C语言中局部变量和全局变量变量的存储类别(static,extern,auto,register) 1. 从变量的作用域划分变量(即 ...

  3. word中公式的排版及标题列表

    1.首先建好你的标题,如标题1,标题2等等,你能够依次改变它们的字体,段落等格式,新建格式例如以下图所看到的 红圈处即建立新的格式,你能够建立不论什么你想要的格式,非常方便: 2.当你建立好了多个标题 ...

  4. JVM调优基础 分类: B1_JAVA 2015-03-14 09:33 250人阅读 评论(0) 收藏

    一.JVM调优基本流程 1.划分应用程序的系统需求优先级 2.选择JVM部署模式:单JVM.多JVM 3.选择JVM运行模式 4.调优应用程序内存使用 5.调优应用程序延迟 6.调优应用程序吞吐量 二 ...

  5. dll = MinGW gcc 生成动态链接库 dll 的一些问题汇总

    MinGW gcc 生成动态链接库 dll 的一些问题汇总 https://blog.csdn.net/liyuanbhu/article/details/42612365 网络上关于用 MinGW  ...

  6. Lucene学习总结之八:Lucene的查询语法,JavaCC及QueryParser 2014-06-25 14:25 722人阅读 评论(1) 收藏

    一.Lucene的查询语法 Lucene所支持的查询语法可见http://lucene.apache.org/java/3_0_1/queryparsersyntax.html (1) 语法关键字 + ...

  7. Call to a member function assign() on a non-object;thinkphp中报错

    这个在自己写的类中 需要function __construct(){parent::__construct();}继承父类构造函数 当发生这个错误的时候,需要在构造函数中集成父类构造

  8. CEPH OBJECTSTORE API介绍

    Thomas是本人在Ceph中国社区翻译小组所用的笔名,该文首次公布在Ceph中国社区.现转载到本人博客,以供大家传阅 CEPH OBJECTSTORE API介绍 本文由 Ceph中国社区-Thom ...

  9. 【机器学习实战】第3章 决策树(Decision Tree)

    第3章 决策树 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/ ...

  10. php实现 合并表记录(需求是最好的老师)

    php实现 合并表记录(需求是最好的老师) 一.总结 一句话总结:php数组,桶. 1.fgets的作用? 读取一行 0 1 2.如何读取一行中的两个数? fgets()读取一行后explode以空格 ...