书接上回 实例教程(一)

本文将详细描述使用scrapy爬去左岸读书所有文章并存入本地MySql数据库中,文中所有操作都是建立在scrapy已经配置完毕,并且系统中已经安装了Mysql数据库(有权限操作数据库)。

为了避免读者混淆,这里也使用tutorial作为scrapy project名称(工程的名字可以有读者自己定制)。

1. 建立tutorial工程

 scrapy startproject tutorial

上述命令运行完毕后会得到tutorial(或者自定义名称)的目录,使用tree命令可以查看tutorial的目录结构,如下图所示

2. 解析左岸文章结构

左岸读书为读者提供了一些优美文章,喜欢的读者可以自行订阅(在这里提博主打广告啦[不用谢^_^])

  站中所有文章都以列表的形式列出,每篇文章链接都给出了文章摘要和相应的信息(如作者,发布时间,分类信息,阅读量等信息)在列表底端给出了下一个列表的链接,具体如下图所示

点击相应的文章题目可以链接到具体的文章内容页面,读者可以自己实验试下,这里不再赘述。

3. 建立mysql数据库

建立mysql数据库 crawed

 create database crawed;
use crawed;

在数据库中建立zreading数据表,这里我们要抓取文章标题,作者,文章发表日期,文章类别,文章标签,阅读量及文章内容,建立如下数据表

 CREATE TABLE `zreading` (
`title` varchar(100) NOT NULL,
`author` varchar(50) NOT NULL,
`pub_date` varchar(30) DEFAULT NULL,
`types` varchar(50) DEFAULT NULL,
`tags` varchar(50) DEFAULT NULL,
`view_counts` varchar(20) DEFAULT '',
`content` text
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

4. 在items.py中编写需要抓取的内容

items.py是爬虫根据用户兴趣定义爬去内容的文件,用户可以根据自己的需求,定义相应的class,爬虫在解析网页时根据解析规则生成item类对象

这里根据我们步骤3中的数据类别建立如下类:

 class TutorialItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
title = scrapy.Field()
author = scrapy.Field()
pub_date = scrapy.Field()
types = scrapy.Field()
tags = scrapy.Field()
view_count = scrapy.Field()
content = scrapy.Field()

5. 编辑pipelines.py文件

pipelines.py是设置抓取内容存储方式的文件,例如可以存储到mysql或是json文件中,读者可以根据自己实际需求选择相应的方式,本例中选择存储到mysql中。

 from twisted.enterprise import adbapi
import MySQLdb
import MySQLdb.cursors
from scrapy.crawler import Settings as settings
class TutorialPipeline(object): def __init__(self): dbargs = dict(
host = 'your host' ,
db = 'crawed',
user = 'user_name', #replace with you user name
passwd = 'user_password', # replace with you password
charset = 'utf8',
cursorclass = MySQLdb.cursors.DictCursor,
use_unicode = True,
)
self.dbpool = adbapi.ConnectionPool('MySQLdb',**dbargs) '''
The default pipeline invoke function
'''
def process_item(self, item,spider):
res = self.dbpool.runInteraction(self.insert_into_table,item)
return item def insert_into_table(self,conn,item):
conn.execute('insert into zreading(title,author,pub_date,types,tags,view_counts,content) values(%s,%s,%s,%s,%s,%s,%s)', (item['title'],item['author'],item['pub_date'],item['types'],item['tags'],item['view_count'],item['content']))

6. 在settings.py中设置pipeline

当使用pipeline保存抓取内容时,需要设置相应的pipeline类,以便让系统知道根据什么方式进行存储,在settings.py中加入一下代码

 ITEM_PIPELINES = {
'tutorial.pipelines.TutorialPipeline': 300,
}

7. 解析网页,抓取需要内容

经过以上6步,所有的配置的工作已经结束,接下来,我们的重点就是如何从网页中解析出我们所需要的内容,在解析过程中需要借助一些开发插件,比如firefox的firebug,chrome的开发者工具,本例中使用chrome的开发工具。

在这一步我们需要编写网页解析的具体逻辑-如何处理网页,得到我们所需的内容。在spiders目录下,新建zreading.py文件,然后定义zreadingCrawl爬虫(继承scrapy的BaseSpider即可)

 class zreadingCrawl(BaseSpider):
name = "zreading" # the name of spider
allowed_domain = ['zreading.cn'] # allowed domain for spiders
start_urls = [
'http://www.zreading.cn' #the start url / the entrance of spider
]

具体的解析过程如下:

a. 首先解析左岸的文章列表,使用chrome的开发者工具,在文章标题处右击,点击检查,然后复制为xpath路径。在解析网页是就可以根据这个路径定位到你所需的内容,这里我们只是想获得文章的连接,所有我们只需要提取文章题目链接的

href属性值即可,在文章目录页中,有两种我们需要的链接,一种是文章内容的链接,另一种则是文章列表的下一页,对于文章内容链接我们可以直接请求响应的URL,然后解析内容即可;而对于目录链接则可以从头解析(也即请求目录页然后进一步解析)。

由上述可知,这是一个不断循环的过程,直至没有下一页为止。

b. 在解析的过程中,对于每次的解析内容,都需要进行处理,如在提取标题时,得到的内容前后包括很多空格,而且为了避免在数据库出现乱码,所有数据都编码成utf8。这里我们需要编写

c. 具体代码如下(在zreadingCrawl中添加如下函数):

 def parse(self,response):

         if response.url.endswith('html'):    

             item = self.parsePaperContent(response)

         else:
# get all the page links in list Page
sel = Selector(response)
links = sel.xpath('//*[@id="content"]/article/header/h2/a/@href').extract()
for link in links:
yield Request(link,callback=self.parse) # get the next page to visitr
next_pages = sel.xpath('//*[@id="content"]/div/a[@class="next"]/@href').extract()
if len(next_pages) != 0:
yield Request(next_pages[0],callback=self.parse)
# record the list page yield item
 def parsePaperContent(self,response):
print "In parsse paper content function......"
# get the page number '5412.html'
# page_id = response.url.split('/')[-1].split('.')[0] ----- OK
r =re.match(r'\d+',response.url.split('/')[-1])
page_id = r.group()
# instantie the item
zding = TutorialItem()
sel = Selector(response)
#add tilte
title = sel.xpath("//div[@id='content']/article/header/h2/text()").extract()[0]
s_title = title.encode("utf-8")
zding['title'] = s_title.lstrip().rstrip() #add pub_date
pub_date = sel.xpath('//*[@id="'+page_id+'"]/div[2]/span[1]/text()').extract()[0]
s_pub_date = pub_date.encode("utf8")
zding['pub_date'] = s_pub_date.lstrip().rstrip() #add author
author = sel.xpath('//*[@id="'+page_id+'"]/div[2]/span[2]/a/text()').extract()[0]
s_author = author.encode("utf8")
zding['author'] = s_author.lstrip().rstrip() #add tags including type and paper tags tags = sel.xpath('//*[@id="'+page_id+'"]/div[2]/a/text()').extract()
tags = [s.encode('utf8') for s in tags]
zding['types'] = tags[0]
zding['tags'] = "+".join(tags[1:]) #add view count
views = sel.xpath('//*[@id="'+page_id+'"]/div[2]/span[3]/text()').extract()[0]
r = re.search(r'\d+',views)
view_count = int(r.group())
zding['view_count'] = view_count
#add content
content = sel.xpath('//*[@id="'+page_id+'"]/div[3]/p/text()').extract()
zding['content'] = "\n".join(content) #return the item
return zding

8. 在命令行下运行

 scrapy crawl zreading

在屏幕中会闪解析过的网页和解析得到的item,等运行完毕后查看数据库中的zreading表的内容,这里因为文章较长,不再单独贴图。

*****声明:本帖纯粹是个人兴趣爱好,绝无其他任何恶意。本人很喜欢看左岸的文章,恰逢学习scrapy,就以此为例。在此声明,本帖只是技术解析,绝无转载。*****

Scrapy爬虫实例教程(二)---数据存入MySQL的更多相关文章

  1. Scrapy 爬虫实例教程(一)---简介及资源列表

    Scrapy(官网 http://scrapy.org/)是一款功能强大的,用户可定制的网络爬虫软件包.其官方描述称:" Scrapy is a fast high-level screen ...

  2. scrapy爬虫框架教程(二)-- 爬取豆瓣电影TOP250

    scrapy爬虫框架教程(二)-- 爬取豆瓣电影TOP250 前言 经过上一篇教程我们已经大致了解了Scrapy的基本情况,并写了一个简单的小demo.这次我会以爬取豆瓣电影TOP250为例进一步为大 ...

  3. scrapy爬虫框架教程(二)-- 爬取豆瓣电影

    前言 经过上一篇教程我们已经大致了解了Scrapy的基本情况,并写了一个简单的小demo.这次我会以爬取豆瓣电影TOP250为例进一步为大家讲解一个完整爬虫的流程. 工具和环境 语言:python 2 ...

  4. scrapy爬虫学习系列二:scrapy简单爬虫样例学习

    系列文章列表: scrapy爬虫学习系列一:scrapy爬虫环境的准备:      http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_python_00 ...

  5. Silverlight实例教程 - Validation数据验证开篇

    Silverlight 4 Validation验证实例系列 Silverlight实例教程 - Validation数据验证开篇 Silverlight实例教程 - Validation数据验证基础 ...

  6. 简单scrapy爬虫实例

    简单scrapy爬虫实例 流程分析 抓取内容:网站课程 页面:https://edu.hellobi.com 数据:课程名.课程链接及学习人数 观察页面url变化规律以及页面源代码帮助我们获取所有数据 ...

  7. Silverlight实例教程 - Validation数据验证DataAnnotation机制和调试技巧(转载)

    Silverlight 4 Validation验证实例系列 Silverlight实例教程 - Validation数据验证开篇 Silverlight实例教程 - Validation数据验证基础 ...

  8. Silverlight实例教程 - Validation数据验证基础属性和事件(转载)

    Silverlight 4 Validation验证实例系列 Silverlight实例教程 - Validation数据验证开篇 Silverlight实例教程 - Validation数据验证基础 ...

  9. scrapy爬虫实例(1)

    爬虫实例 对象 阳光问政平台 目标 : 主题,时间,内容 爬取思路 预先设置好items import scrapy class SuperspiderItem(scrapy.Item): title ...

随机推荐

  1. ios runtime 打印内 内部调用的属性

    unsigned int count = 0; // 拷贝出所有的成员变量列表 Ivar *ivars = class_copyIvarList([UITextField class], &c ...

  2. R笔记(1):formula和Formula

    #####开一个新的系列.关于R的一些笔记,就是遇到过的一些问题的简单整理.可能很基本,也可能没什么大的用处,作为一个记录而已.------------------------------------ ...

  3. Sampling Distributions and Central Limit Theorem in R(转)

    The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...

  4. iOS安全攻防之反编译

    Class-dump 进行反编译: 之前做代码混淆, 首先了解了下反编译,使用入门级的反编译 class-dump.下载地址:最新版Class-dump. 首先需要注意的是,class-dump的作用 ...

  5. 如何在Java中调用Python代码

    有时候,我们会碰到这样的问题:与A同学合作写代码,A同学只会写Python,而不会Java, 而你只会写Java并不擅长Python,并且发现难以用Java来重写对方的代码,这时,就不得不想方设法“调 ...

  6. JSONP不支持循环调用

    问题描述 在jquery或zepto下,循环调用同一个jsonp ;i<;i++){ $.ajax({ url:'https://m.suning.com/authStatus?callback ...

  7. 图表(Chart & Graph)你真的用对了吗?

    欢迎大家持续关注葡萄城控件技术团队博客,更多更好的原创文章尽在这里~~ 工作中,我们常常会遇到各式各样的数据,例如网站性能,销售业绩,客户服务 .营销活动等数据.对于这些数据,有哪些行之有效的方法来形 ...

  8. postgresql 多表联查

    使用语句的先后顺序并不是优先级的排序: 连接分为:内连接和外连接,外连接分为左外连接,右外连接,全连接 概念上解释,表之间联合后数据如何整合. 返回的数据条数,可以通过集合求算.假如A集合有10条数据 ...

  9. 【数据库】Mean web开发 04-MongoDB在Linux上的安装及遇到的问题

    简介 Mean是JavaScript的全栈开发框架.更多介绍 用MongoDB实现持久数据的存储是Mean Web全栈开发中的一部分. MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非 ...

  10. Dubbox中开发REST风格的远程调用

    转载: http://zyg345646335.iteye.com/blog/2208899