Fibonacci

Problem Description
2007年到来了。经过2006年一年的修炼,数学神童zouyu终于把0到的Fibonacci数列
(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。
 
Input
输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾。
 
Output
输出f[n]的前4个数字(若不足4个数字,就全部输出)。
 
Sample Input
0
1
2
3
4
5
35
36
37
38
39
40
 
Sample Output
0 1 1 2 3 5 9227 1493 2415 3908 6324 1023
 
思路:很明显不是递推题,那就是在线算法,给一个快速求一个即可~~
我们由递推关系F[n] = F[n-1] + F[n-2].使用数学数列的消除(数归)应该可以得到F[n]与n之间的关系式:
同时利用对10取对数的方法,即可将数值的位数化为科学计算法形式,那么在通过pow(10,小数部分)的逆向就可以得到F[n]的前几位。这时只需累乘10(即还原前几位的过程)满足范围即可;
细节:里面先计算了前40为数值。由于之后取对数化简时,我们从中括号中提了[(1+sqrt(5)/2]^n,之后变成
这时当n较大时,最后一项趋于0,所以只需计算前两项即可;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
#include<map>
#include<queue>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define MSi(a) memset(a,0x3f,sizeof(a))
#define inf 0x3f3f3f3f
#define lson l, m, rt << 1
#define rson m+1, r, rt << 1|1
typedef pair<int,int> PII;
#define A first
#define B second
#define MK make_pair
typedef __int64 ll;
template<typename T>
void read1(T &m)
{
T x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
if(a>) out(a/);
putchar(a%+'');
}
ll F[],n;
const double dot = (sqrt(.)+)/;
int main()
{
F[] = ;F[] = ;
rep1(i,,) F[i] = F[i-]+F[i-];
while(scanf("%d",&n) == ){
if(n <= ){
ll ans = F[n];
while(ans >= ) ans /= ;
out(ans);
}
else{
double ans = -0.5*log10()+.*n*log10(dot);
ans -= int(ans);//忽略了10^n,只是数值
ans = pow(,ans);
while(ans < ) ans *= ;
printf("%d",int(ans));
}
puts("");
}
return ;
}

hdu 1568 Fibonacci 数学公式的更多相关文章

  1. HDU 1568 Fibonacci 数学= = 开篇

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1568 分析:一道数学题 找出斐波那契数列的通项公式,再利用对数的性质就可得到前几位的数 斐波那契通项公 ...

  2. HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  3. hdu 1568 Fibonacci 快速幂

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  4. [hdu 1568] Fibonacci数列前4位

    2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2 ...

  5. HDU 1568 Fibonacci

    题解:首先,对于小于10000的斐波那契数,我们直接计算,当大于10000时,用公式,由于只要输出前四位,所以不用考虑浮点数的问题,算出其取log的结果: tmp=(log(sq5/5)+n*log( ...

  6. HDU 1568 Fibonacci(大数前4位)

    转载自:http://blog.csdn.net/thearcticocean/article/details/47615241 分析:x=1234567.求其前四位数: log10(x)=log10 ...

  7. HDU 3117 Fibonacci Numbers(围绕四个租赁斐波那契,通过计++乘坐高速动力矩阵)

    HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵高速幂) ACM 题目地址:HDU 3117 Fibonacci Numbers 题意:  求第n个斐波那契数的 ...

  8. hdu 1568 (log取对数 / Fib数通项公式)

    hdu 1568 (log取对数 / Fib数通项公式) 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]= ...

  9. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

随机推荐

  1. eclipse安装android sdk后工具栏没有图标的设置

    如果没有出现这android图标,选择'Window>Customize Perspective...>Commands',并在'Available command groups'中勾选' ...

  2. 最小生成树------Prim算法

    定义:设G=(V,E)是一个无向连通图.如果G的生成子图T=(V,E’)是一棵树,则称T是G的一棵生成树(Spanning Tree). 应用生成树可以得到关于一个电网的一组独立的回路方程.第一步是要 ...

  3. Jquery选择器,操作DOM

    刚接触jQuery,她真的是个好东西,操作DOM,修改样式,都很方便,主要获取DOM树的类和子代很方便. 今天用jq做了tab面包屑,不过用的是别人的代码,自己修改的,不错也做出来了,原理也有些明白, ...

  4. Android -tool工具UIautomatorviewer提示“不能让屏幕黑屏”

    Android中有很多工具可以让我们使用,我使用比较多的有属DDMS,UIautomatorviewer,DDMS中信息也很强大,有空的时候在理理 这篇博主写的很详细:http://www.cnblo ...

  5. SSM成功了

  6. float保留7位double保留15位之后的数字四舍五进

    public class $66 { public static void main(String agrs[]) { float a=(float) 1.123456789;//8位 System. ...

  7. mysql同时向一个表中插入多条数据问题!!见详细

    INSERT INTO `表名` (`字段1`,`字段2`,`字段3`,`字段4`) values ('数组1数据1','数组1数据2','数组1数据3','数组1数据4'), ('数组2数据1',' ...

  8. Extjs3 Combo实现百度搜索查询

    在Extjs中实现Combo手输模糊筛选出下拉框数据.之前一直利用的Combo的keyup来实时的请求数据库进行查询.最近发现了一个更好的方式:只需要引用一个ComboBoxQuery Ext.ns( ...

  9. java 注解Annotation

    什么是注解?  注解,顾名思义,注解,就是对某一事物进行添加注释说明,会存放一些信息,这些信息可能对以后某个时段来说是很有用处的. java注解又叫java标注,java提供了一套机制,使得我们可以对 ...

  10. $(document).ready() 、 $('#id').load() 、window.onload 的区别

    今天做项目的时候遇到一个问题,结果死在了$(document).ready(). $('#id').load() .window.onload的区别上.然后,就整理一下,这三者的区别. 参考文章:ht ...