《图解 TCP-IP(第 5 版)》
简单的方法(每次增加一倍):
insert into tb_user(f_id, f_username)
select rand(), f_username from tb_user
《图解 TCP-IP(第 5 版)》的更多相关文章
- 简单物联网:外网访问内网路由器下树莓派Flask服务器
最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...
- 利用ssh反向代理以及autossh实现从外网连接内网服务器
前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...
- 外网访问内网Docker容器
外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...
- 外网访问内网SpringBoot
外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...
- 外网访问内网Elasticsearch WEB
外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...
- 怎样从外网访问内网Rails
外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...
- 怎样从外网访问内网Memcached数据库
外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...
- 怎样从外网访问内网CouchDB数据库
外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...
- 怎样从外网访问内网DB2数据库
外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...
- 怎样从外网访问内网OpenLDAP数据库
外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...
随机推荐
- offsetWidth clientWidth scrollWidth 的区别
了解 offsetWidth clientWidth scrollWidth 的区别 最近需要清除区分开元素的width,height及相应的坐标等,当前这篇用来区分offsetWidth clien ...
- C# 静态方法 静态属性 调用静态方法
C#的类中可以包含两种方法:静态方法和非静态方法. 使用了static 修饰符的方法为静态方法,反之则是非静态方法. 静态方法是一种 特殊的成员方法,它不属于类的某一个具体的实例,而是属于类本身.所以 ...
- Bootstrap前端框架快速入门专题
1.Bootstrap简介 Bootstrap,出自自 Twitter,是目前最受欢迎的前端框架. Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的前端框架,它简洁灵活,使得 W ...
- Python自动化学习--异常提示
举例:打开一个不存在的文件时: >>open("abc.txt","r")会提示错误 Traceback (most recent call las ...
- 022-OpenStack 中虚拟机hostname问题
第一种: openstack中直接使用 hostnamectl 修改主机名,主机名在内核中的信息会被立即修改,但是当系统重启之后,主机名又重新变成原来的主机名称了.openstack主机名由cloud ...
- laplace transform 拉普拉斯变换
参考网址: 1. https://en.wikipedia.org/wiki/First-hitting-time_model 2. https://en.wikipedia.org/wiki/Lap ...
- ubuntu 系统问题总结
一.主题问题 高分辨率显示可能会造成虚拟机中的显示很小,需要调整合适的显示比例.但是 ubuntu 18.04 中的 display 的 scale 只能调整 100% 300%,可能使用 gnome ...
- bzoj3510 首都 LCT 维护子树信息+树的重心
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3510 题解 首先每一个连通块的首都根据定义,显然就是直径. 然后考虑直径的几个性质: 定义:删 ...
- Azure IoT 技术研究系列4
上两篇博文中,我们介绍了将设备注册到Azure IoT Hub,设备到云.云到设备之间的通信: Azure IoT 技术研究系列2-设备注册到Azure IoT Hub Azure IoT 技术研究系 ...
- NOIP2016 D2T1 组合数问题
洛谷P2822 数学真重要啊…… 其实解这一题的关键就是组合恒等式:C(n,m)=C(n-1,m)+C(n-1,m-1),然后再知道组合数的矩阵(杨辉三角)和题中n,m的关系就很容易解决了(然而做这题 ...