1.我们之前已经定义了代价函数J,可以将代价函数J最小化的方法,梯度下降是最常用的算法,它不仅仅用在线性回归上,还被应用在机器学习的众多领域中,在后续的课程中,我们将使用梯度下降算法最小化其他函数,而不仅仅是最小化线性回归的代价函数J。本节课中,主要讲用梯度下降的算法来最小化任意的函数J,下图是我们的问题:

  

  (1)梯度下降的思路:

    给定θ0和θ1的初始值,首先将θ0和θ1初始化为0,在梯度下降中我们要做的是不停的改变θ0和θ1,来使得J(θ0,θ1)变小,直到我们找到J的值的最小值或者局部最小值。

    我们从θ0和θ1的某个值出发,对θ0和θ1赋以初值,就是对应于从下面这个函数的表面上某个点出发,一般情况下降θ0和θ1赋初值为0。

    

  (2)梯度下降算法:

  

    我们要更新参数θj,为θj减去α乘以这一部分,接下来详细解释该公式:

    (1)赋值:符号 := 表示赋值,这是一个赋值运算符。具体的说,如果写成a:=b,在计算机中,表示不管a的原始值是是什么,将b赋值给a,这意味着我们设定a等于b的值,这就是赋值。

    (2)α:α表示学习率,用来控制在梯度下降的时候,我们迈出多大的步子,α如果很大,那么梯度就下降的很迅速,我们就会用大步子下山;如果α值比较小,我们就会迈着很小的碎步下山

    (3)θ0和θ1的更新,对于:

  

  我们需要同时更新θ0和θ1,在这个式子中,就是讲θ0减去某项,将θ1减去某项,实现的方法是:计算右边的部分,对θ0和θ1进行计算,然后同时更新θ0和θ1,下面是正确的同步更新的方法。

梯度下降算法(Gradient descent)GD的更多相关文章

  1. 机器学习(1)之梯度下降(gradient descent)

    机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...

  2. 梯度下降(gradient descent)算法简介

    梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...

  3. 梯度下降(Gradient Descent)小结 -2017.7.20

    在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training se ...

  4. 梯度下降(Gradient descent)

    首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示: 因为在上一篇中引入了一些符号,所以这里再次补充说明一下: x‘s:在这里是一个二维的向量,例如:x1(i)第i间 ...

  5. <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本

    梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...

  6. (二)深入梯度下降(Gradient Descent)算法

    一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...

  7. CS229 2.深入梯度下降(Gradient Descent)算法

    1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...

  8. (3)梯度下降法Gradient Descent

    梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...

  9. 梯度下降法Gradient descent(最速下降法Steepest Descent)

    最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向  d=−gk

随机推荐

  1. latex beamer技巧

    %章节标题\section{Related work(LSH)} %开始一页ppt \begin{frame}{Related work}{} \partitle{Locality-Sensitive ...

  2. Linux系统安装时分区的介绍

    一般来说,在linux系统中都有最少两个挂载点,分别是/ (根目录)及 swap(交换分区),其中,/ 是必须的: 建议挂载的几大目录: /-------根目录,唯一必须挂载的目录.不要有任何的犹豫, ...

  3. Spring MVC过滤器HiddenHttpMethodFilter

    浏览器form表单只支持GET与POST请求,而DELETE.PUT等method并不支持,spring3.0添加了一个过滤器,可以将这些请求转换为标准的http方法,使得支持GET.POST.PUT ...

  4. Java的LinkedList底层源码分析

    首先我们先说一下,源码里可以看出此类不仅仅用双向链表实现了队列数据结构的功能,还提供了链表数据结构的功能.

  5. Mybatis 一对多 关联查询查询

    一对多 与 一对一 查询有许多相似之处. 最主要的区别是 查询结果是list,与之对应的标签为collection. 班级和学生,一个班有多个学生,而每个学生只能属于一个班. 此时班级编号作为学生表的 ...

  6. 使用tushare获取股票实时分笔数据延时有多大

    使用tushare获取股票实时分笔数据延时有多大 前几天分享了一段获取所有股票实时数据的代码,有用户积极留言,提出一个非常棒的问题:如果数据本生的延时非常严重,通过代码获取数据再快又有什么用呢? 一直 ...

  7. laravel Route::resource() 资源路由

    格式: Route::resource('/order', 'OrderController', ['as' => 'admin']); 框架自动创建路由及其对应控制器中的方法: 请求方式 路由 ...

  8. CANopen的相关学习

    CANopen是一种架构在控制局域网路(Controller Area Network, CAN)上的高层通讯协定,包括通讯子协定及设备子协定常在嵌入式系统中使用,也是工业控制常用到的一种现场总线. ...

  9. ES6中变量的解构赋值

    1.数组的解构赋值 基本用法 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring). 输出: 上面代码表示,可以从数组中提取值,按照对应位置,对变 ...

  10. 图解http协议学习笔记

    一 ,基本概念 1互联网相关的各协议族为tcp/ip协议(网际协议),tcp/ip  ftp,DNS(通过域名解析ip地址),http(超文本传输协议) 还有很多协议 ,只是列举比较熟悉的 2tcp/ ...