在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来。

   TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,如:saver.save(sess, "/Model/model"), 执行完,在相应的目录下将会有4个文件:

    meta:文件保存的是图结构信息,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。

    ckpt保存每个变量的取值,此处文件名的写入方式会因不同参数的设置而不同。是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之 前,保存在.ckpt文件中。0.11后,通过两个文件保存,如:.data-00000-of-00001和.index文件

    checkpoint文件:checkpoint_dir目录下还有checkpoint文件,该文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model。加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的。

    保存模型时,只会保存变量的值,placeholder里面的值不会被保存。

  关于save()方法的参数记录:

      • sess:在tensorflow中,变量是存在于Session环境中,即只有在Session环境下才会存有变量值,因此,保存模型时需要传入session
      • global_step:在n次迭代后,再保存模型,只需设置global_step参数即可
      • 由于图是不变的,没必要每次都去保存,可以在多次迭代过程中只用保存一次模型即可,可以通过设置write_meta_graph=False即可
      • keep_checkpoint_every_n_hours:用来设置间隔时间来保存
      • max_to_keep: 用来设置保存最近模型文件的个数
      • 如果不想保存所有变量,而只保存一部分变量,可以通过指定variables/collections,默认是保存所有的变量。

    tf.train.Saver类也支持在保存和加载时给变量重命名,声明Saver类对象的时候使用一个字典dict重命名变量即可,{"已保存的变量的名称name": 重命名变量名}。

  导入模型

    加载图:saver=tf.train.import_meta_graph(.meta文件)即可。

    加载模型参数:aver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))

graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict = {w1: 13.0, w2: 17.0}
注意w1:0是tensor的name,既可以指定变量名称,也可以指定操作名称。

  其实,我们也可以只恢复图的一部分,并且再加入其它的op用于fine-tuning。只需通过graph.get_tensor_by_name()方法获取需要的op,并且在此基础上建立图即可。例如:假设我们想使用已经训练好的VGG模型,并且要更改部分层,如下:

saver = tf.train.import_meta_graph('vgg.meta')
# 访问图
graph = tf.get_default_graph() #访问用于fine-tuning的output
fc7= graph.get_tensor_by_name('fc7:0') #如果你想修改最后一层梯度,需要如下
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list() new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)

Tensorflow模型保存与加载的更多相关文章

  1. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  2. 转 tensorflow模型保存 与 加载

    使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获 ...

  3. tensorflow实现线性回归、以及模型保存与加载

    内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建 ...

  4. [PyTorch 学习笔记] 7.1 模型保存与加载

    本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_save.py https://githu ...

  5. sklearn模型保存与加载

    sklearn模型保存与加载 sklearn模型的保存和加载API 线性回归的模型保存加载案例 保存模型 sklearn模型的保存和加载API from sklearn.externals impor ...

  6. TensorFlow构建卷积神经网络/模型保存与加载/正则化

    TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...

  7. TensorFlow的模型保存与加载

    import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf #tensorboard --logdir=&qu ...

  8. tensorflow 之模型的保存与加载(一)

    怎样让通过训练的神经网络模型得以复用? 本文先介绍简单的模型保存与加载的方法,后续文章再慢慢深入解读. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ### ...

  9. TensorFlow保存、加载模型参数 | 原理描述及踩坑经验总结

    写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度 ...

随机推荐

  1. js-展开评论与隐藏评论

    //控制展开评论和隐藏评论 controldiscuss(){ $(".opendiss").click(function(){ if($(this).context.innerH ...

  2. json 转xml

    var jStr = JsonConvert.SerializeObject(new { root = new { li = list } }); var xml = JsonConvert.Dese ...

  3. UNIX环境C - 系统信号

    一.信号的概念 信号就是一种软中断,进程与进程之间信号的传递,都是通过内核来当做中转站的,不能直接传递信号. 二.信号的分类(128位信号,不过可用信号就1~64除去32与33) 1.不可靠信号(SI ...

  4. Codeforces 950C Zebras ( 贪心 && 模拟 )

    题意 : 给出一个 01 串,要求你将其分隔出若干个子序列 ( 每个数字只能属于某一个子序列 ) ,子序列必须满足由 0 开头和结尾,且中间需 01 交替构成.若无法做到,则输出 -1. 分析 :  ...

  5. HDU 2923 Relocation(状压dp+01背包)

    题目代号:HDU2923 题目链接:http://poj.org/problem?id=2923 Relocation Time Limit: 1000MS Memory Limit: 65536K ...

  6. selenium+常见操作

    1.多窗口操作 有些页面的链接打开后,会重新打开一个窗口,对于这种情况,想在新页面上操作,就得先切换窗口了.获取窗口的唯一标识用句柄表示,所以只需要切换句柄,我们就能在多个页面上灵活自如的操作了. 句 ...

  7. C++学习一二

    为了更深入的学习程序编写,以及进行相关算法的编写.决定每天花点时间学习C++:以下是每天的学习笔记. 一.std代表命名空间,可以用using来省略. 二.std:endl.输出一个换行符,并且“刷新 ...

  8. yum install ntp 报错:Error: Package: ntp-4.2.6p5-25.el7.centos.2.x86_64 (base)

    redhat7 在安装ntp时报如下错误 Error: Package: ntp-4.2.6p5-25.el7.centos.2.x86_64 (base) Requires: ntpdate = 4 ...

  9. 关于Tomcat重启和关闭后重启session变化

    ,当页面第一次访问,session的attribute还未赋值,为null 当页面第二次访问时,这时当前的session的attribute有值了! 到了本文章的点题时刻!! 如果我是直接点击serv ...

  10. 将Microsoft SQL Server 2000数据库转换成MySQL数据库

    1. 下载并安装MyODBC.(如果是XP请下载5.3的旧版本,8.x的新版本运行有问题) 2. 创建一个空的MySQL数据库. 3. 在Windows >> 控制面板 >> ...