在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来。

   TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,如:saver.save(sess, "/Model/model"), 执行完,在相应的目录下将会有4个文件:

    meta:文件保存的是图结构信息,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。

    ckpt保存每个变量的取值,此处文件名的写入方式会因不同参数的设置而不同。是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之 前,保存在.ckpt文件中。0.11后,通过两个文件保存,如:.data-00000-of-00001和.index文件

    checkpoint文件:checkpoint_dir目录下还有checkpoint文件,该文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model。加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的。

    保存模型时,只会保存变量的值,placeholder里面的值不会被保存。

  关于save()方法的参数记录:

      • sess:在tensorflow中,变量是存在于Session环境中,即只有在Session环境下才会存有变量值,因此,保存模型时需要传入session
      • global_step:在n次迭代后,再保存模型,只需设置global_step参数即可
      • 由于图是不变的,没必要每次都去保存,可以在多次迭代过程中只用保存一次模型即可,可以通过设置write_meta_graph=False即可
      • keep_checkpoint_every_n_hours:用来设置间隔时间来保存
      • max_to_keep: 用来设置保存最近模型文件的个数
      • 如果不想保存所有变量,而只保存一部分变量,可以通过指定variables/collections,默认是保存所有的变量。

    tf.train.Saver类也支持在保存和加载时给变量重命名,声明Saver类对象的时候使用一个字典dict重命名变量即可,{"已保存的变量的名称name": 重命名变量名}。

  导入模型

    加载图:saver=tf.train.import_meta_graph(.meta文件)即可。

    加载模型参数:aver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))

graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict = {w1: 13.0, w2: 17.0}
注意w1:0是tensor的name,既可以指定变量名称,也可以指定操作名称。

  其实,我们也可以只恢复图的一部分,并且再加入其它的op用于fine-tuning。只需通过graph.get_tensor_by_name()方法获取需要的op,并且在此基础上建立图即可。例如:假设我们想使用已经训练好的VGG模型,并且要更改部分层,如下:

saver = tf.train.import_meta_graph('vgg.meta')
# 访问图
graph = tf.get_default_graph() #访问用于fine-tuning的output
fc7= graph.get_tensor_by_name('fc7:0') #如果你想修改最后一层梯度,需要如下
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list() new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)

Tensorflow模型保存与加载的更多相关文章

  1. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  2. 转 tensorflow模型保存 与 加载

    使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获 ...

  3. tensorflow实现线性回归、以及模型保存与加载

    内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建 ...

  4. [PyTorch 学习笔记] 7.1 模型保存与加载

    本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_save.py https://githu ...

  5. sklearn模型保存与加载

    sklearn模型保存与加载 sklearn模型的保存和加载API 线性回归的模型保存加载案例 保存模型 sklearn模型的保存和加载API from sklearn.externals impor ...

  6. TensorFlow构建卷积神经网络/模型保存与加载/正则化

    TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...

  7. TensorFlow的模型保存与加载

    import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf #tensorboard --logdir=&qu ...

  8. tensorflow 之模型的保存与加载(一)

    怎样让通过训练的神经网络模型得以复用? 本文先介绍简单的模型保存与加载的方法,后续文章再慢慢深入解读. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ### ...

  9. TensorFlow保存、加载模型参数 | 原理描述及踩坑经验总结

    写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度 ...

随机推荐

  1. mysql分批导出数据和分批导入数据库

    mysql分批导出数据和分批导入数据库 由于某些原因,比如说测试环境有很多库,需要迁移到新的环境中,不需要导出系统库的数据.而数据库又有好多,如何才能将每个库导出到独立的文件中呢?导入到一个文件的话, ...

  2. Python 3标准库第四章

    第四章日期和时间-----------------    不同于int.float和str,Python没有包含对应日期和时间的原生类型,不过提供了3个相应的模块,可以采用多种表示来管理日期和时间值. ...

  3. javascript基本知识图解

    转载自 网络博客 变量 数据类型 javascript运算符 javascript流程语句 javascript 数组 javascript window对象 javascript DOM javas ...

  4. 【java】并发执行ExecutorService的sumbit返回值的顺序问题

    ArrayList<Future> fl = new ArrayList<Future>(); for (int i = 0; i < 10; i++) { Future ...

  5. linux 内存

    [转]Linux 查看内存(free buffer cache) 转自:http://elf8848.iteye.com/blog/1995638 Linux下如何查内存信息,如内存总量.已使用量.可 ...

  6. make all age=20 makefile 传参数

    你可以直接在Make的时候,在命令行下面传入一个参数或者变量,它会覆盖掉Makefile里面的变量或者参数.比如,在你的Makefile里面定义了一个变量age. .PHONY:all AGE = a ...

  7. CDOJ 1057 秋实大哥与花 线段树 区间更新+区间查询

    链接: I - 秋实大哥与花 Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%lld & %llu Submit ...

  8. [CF1093G]Multidimensional Queries 题解

    前言 DennyQi太巨了! 定义一个点\(a\),\(a_x\)表示\(a\)在第\(x\)维空间上的坐标值 题解 这题的思路珂以说非常巧妙(原谅我又用了这个"珂"), 我们知道 ...

  9. The GuidRepresentation for the reader is CSharpLegacy, which requires the binary sub type to be Uuid

    使用客户端链接MongoDb报错 The GuidRepresentation for the reader is CSharpLegacy, which requires the binary su ...

  10. 01-scrapy框架

    1.Scrapy图例: Scrapy Engine(引擎): 负责Spider.ItemPipeline.Downloader.Scheduler中间的通讯,信号.数据传递等. Scheduler(调 ...